Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Yielding Strengh Analysis for Self Supported Pressure Vessels

2002-11-19
2002-01-3479
The hazardous bulk chemical liquid cargo transportation is usually made through highways, using special automotive devices, named semitrailer tank, a kind of mobile tank specially developed to perform this task, manufactured with many types of steel, selected according to the chemical characteristics of the product to be transported. Equipment sizing is made based on specific standards which include specified formulas, loading, and safety factors representing the design criteria of this type of device. Despite of the detailed design criteria for semitrailer tank, it has been observed failure of some pieces of equipment during operation, in a shorter effective life than that one considered in the design phase itself. Considering a detailed study of the stress distribution in this type of equipment, this paper shows a verification of the possibility of yielding failure in the semitrailer tank structure.
Journal Article

Yaw Stability Enhancement of Articulated Commercial Vehicles via Gain-Scheduling Optimal Control Approach

2017-03-28
2017-01-0437
In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
Technical Paper

Yaw Dynamics of Command Steered Multi Axle Semitrailer

2017-01-10
2017-26-0345
This paper investigates the yaw dynamic behaviour of a seven axle tractor semitrailer combination vehicle developed by VRDE (Vehicle Research & Development). The semitrailer has four steerable axles which follow command steering law i.e. all axles of semitrailer are steered in a particular relation with articulation of tractor. A 4 dof (degree of freedom) linear yaw plane model was developed for this combination vehicle. Yaw response characteristics such as lateral acceleration, yaw rate and articulation angle for step and sine steer is obtained from this model. Effects of speed on the above parameters are also studied to the same steering inputs. Lateral tyre forces due to semitrailer steering at various speeds are estimated to understand its distribution on each axle. Steady state yaw rate and articulation angle gain are obtained to predict the understeer / oversteer behaviour of combination vehicle.
Technical Paper

Worldclass Product Development Overview

1990-04-01
900893
This paper will discuss Concurrent Engineering as an emerging product development methodology. Specific emphasis will be placed on some of the key tools and considerations necessary for the success of Concurrent Engineering. In particular, the paper will discuss strategic product planning driven by customer requirements and how the product development effort will support the strategic product plan.
Technical Paper

Work Solenoids-Environmental and Design Considerations for Earthmoving Equipment Applications

1986-04-01
860760
Work solenoids are widely used in household appliances. The environment and design of this type application does not lead to solenoids for the earthmoving industry. This paper presents the environmental effects to be considered when designing a solenoid for the earthmoving industry. It further explains the need for, and type of, test necessary to validate the design. Finally a review of production quality procedures, necessary to insure reliable production parts is discussed.
Technical Paper

Winterization of Commercial Vehicles to -50 F

1970-02-01
700709
The development trend in construction machinery has been to produce equipment having a high level of reliability. The dollar loss that occurs when a major piece of equipment breaks down on the job is sufficiently great to justify the cost of providing reliable operation. In the development of the North the need for increased reliability is greater than ever. In extreme low temperature conditions as found on the NORTH SLOPE operation in Alaska, the harshness of the environment places additional stress both on the equipment and the operators. The development of winterization kits for construction and heavy engineering equipment to date has been slow, probably because of a comparatively small market and because the work could be postponed or accomplished by protecting the equipment and operator by temporary means to meet the purpose. The results have not been economical or as efficient as desired but efficient enough to be acceptable.
Technical Paper

Wind Tunnel Test of Cab Extender Incidence on Heavy Truck Aerodynamics

2005-11-01
2005-01-3527
A wind tunnel experiment has been conducted to determine the changes in drag and side force due to the presence and position of cab extenders on a model of a commercial tractor-trailer truck. The geometric variables investigated are the cab extenders angle of incidence, the tractor-trailer spacing and the yaw angle of the vehicle. Three cab extender angles were tested-0°, 15° (out) and -15° (in) with respect to the side of the tractor. The cab and trailer models have the same width and height. The minimum drag coefficient was found for the tractor and trailer combination when the cab extenders were set to 0° angle of incidence with respect to the headwind. This result holds for all yaw angles with moderate gap spacing between the tractor and trailer. This study suggests that commercial tractor-trailer trucks can benefit from adjustable cab extender settings; 0° when using a trailer and -15° when no trailer is used.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

2018-03-23
As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Standard

Wide Base Disc Wheels and Demountable Rims - Truck, Bus, and Trailer

2021-08-02
CURRENT
J876_202108
This SAE Recommended Practice establishes uniform engineering nomenclature for wide base disc wheels and demountable rims. This nomenclature and accompanying figures are intended to define fundamental wide base disc wheel and demountable rim terms. The dimensions given are those necessary to maintain serviceability and interchangeability of the wide base disc wheels and demountable rims with standard hardware. Valve clearances have not been included in this document.
Standard

Wide Base Disc Wheels and Demountable Rims

2007-04-30
HISTORICAL
J876_200704
This SAE Recommended Practice establishes uniform engineering nomenclature for wide base disc wheels and demountable rims. This nomenclature and accompanying figures are intended to define fundamental wide base disc wheels and demountable rim terms. The dimensions given are those necessary to maintain serviceability and interchangeability of the wide base disc wheels and demountable rims with standard hardware. Valve clearances have not been included in this document.
Technical Paper

Which Spring? Where?

1973-02-01
730689
In selecting springs for commercial vehicles, it is essential to consider the fundamental principles of the suspension system as a whole, as well as the specific spring characteristics. This paper discusses the applications of these principles; also, it compares the many types of springs available, including single leaf, multileaf, and two-stage leaf springs, and coil, rubber, and pneumatic springs. Among the considerations stressed are: the relationships of spring static deflections to vehicle pitch frequency and oscillation center location, the questionability of two-stage leaf springs, the disadvantages of single tapered leaf versus multi-leaf springs, the advantages of coil springs in low weight and variable rate, and why pneumatic springs are ideal for large load range, heavy commercial vehicles.
Standard

Wheels/Rims—Trucks—Performance Requirements and Test Procedures

1999-03-01
HISTORICAL
J267_199903
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of wheels and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose vehicles. For other wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles, see SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, see SAE J1204. For bolt together military wheels, see SAE J1992. This document does not cover other special application wheels and rims.
Standard

Wheels/Rims—Performance Requirements and Test Procedures—Truck and Bus

2007-12-10
HISTORICAL
J267_200712
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of wheels and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose vehicles. For other wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles, see SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, see SAE J1204. For bolt together military wheels, see SAE J1992. This document does not cover other special application wheels and rims.
Standard

Wheels/Rims—Military Vehicles—Test Procedures and Performance Requirements

2001-03-31
HISTORICAL
J1992_200103
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of disc wheels, demountable rims, and bolt-together wheels intended for normal highway use on military trucks, buses, truck-trailers, and multipurpose vehicles. For wheels and rims intended for normal highway use by trucks, see SAE J267. For wheels intended for normal highway use by passenger cars, light trucks, and multipurpose vehicles, see SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, see SAE J1204. This document does not cover off-highway or other special application wheels and rims.
Standard

Wheels/Rims - Truck and Bus - Performance Requirements and Test Procedures for Radial and Cornering Fatigue

2021-02-04
CURRENT
J267_202102
This SAE Recommended Practice provides minimum performance target and uniform laboratory procedures for fatigue testing of wheels and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose vehicles. Users may establish design criteria exceeding the minimum performance target for added confidence in a design. The cycle target noted in Tables 1 and 2 are based on Weibull statistics using two parameter, median ranks, 50% confidence level and 90% reliability, and beta equal to two, typically noted as B10C50. For other wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles, refer to SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. For bolt together military wheels, refer to SAE J1992. This document does not cover other special application wheels and rims.
Standard

Wheels/Rims - Truck and Bus - Performance Requirements and Test Procedures for Radial and Cornering Fatigue

2014-11-25
HISTORICAL
J267_201411
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of wheels and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose vehicles. Users may establish design criteria exceeding the minimum performance requirement for added confidence in a design. The cycle requirements noted in Tables 1 and 2 are based on Weibull statistics using 2 parameter, median ranks, 50% confidence level and 90% reliability, and beta equal to 2, typically noted as B10C50. For other wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles, see SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, see SAE J1204. For bolt together military wheels, see SAE J1992. This document does not cover other special application wheels and rims.
Standard

Wheels - Lateral Impact Test Procedure - Road Vehicles

2023-12-13
CURRENT
J175_202312
The SAE Recommended Practice establishes minimum performance requirements and related uniform laboratory test procedures for evaluating lateral (curb) impact collision resistance of all wheels intended for use on passenger cars and light trucks.
Technical Paper

Wheel Traction Prediction - A Comparison Between Models and Experimental Data

2004-10-26
2004-01-2707
The paper attempts to determine which traction model best fits with experimental data for a romanian lugged tractor tire. Different models for predicting net traction and traction efficiency for off-road conditions were considered. These models assume different tire-ground pressure distributions (constant, parabolic) over the undertread area and different contact patch length calculations. Experiments were conducted and the results were compared to the theoretical data. Two of the models are the best fit with the experimental data; both models assumed a parabolic pressure distribution over the undertread.
X