Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
Technical Paper

Advancements in Tire Modeling Through Implementation of Load and Speed Dependent Coefficients

2005-11-01
2005-01-3543
An existing tire model was investigated for additional normal load-dependent characteristics to improve the large truck simulations developed by the National Highway Traffic Safety Administration (NHTSA) for the National Advanced Driving Simulator (NADS). Of the existing tire model coefficients, plysteer, lateral friction decay, aligning torque stiffness and normalized longitudinal stiffness were investigated. The findings of the investigation led to improvements in the tire model. The improved model was then applied to TruckSim to compare with the TruckSim table lookup tire model and test data. Additionally, speed-dependent properties for the NADS tire model were investigated (using data from a light truck tire).
Technical Paper

A Graphic Computer Simulation of the Pedestrian Vehicle Impact

1982-02-01
820170
This paper presents an interactive computer simulation of the pedestrian/vehicle interface. The simulation presents the results in an easy to analyze format including animation of the whole event. User requests for specific output data is available via a graphic menu. The model employs the use of the MacLaughlin/Daniel Computer Simulation developed by the National Highway Traffic Safety Administration. To illustrate the usefulness of the graphical and pictorial output, the results of a pedestrian/vehicle impact are presented.
Technical Paper

A Comparison between Two Different Computer Simulations in Measuring the Vehicle/Pedestrian Impact

1982-02-01
820171
This paper presents the analytical results of two different computer simulations of the vehicle pedestrian impact; PROMETHEUS 2 and the MacLaughlin/Daniel (MACDAN) models. The results presented illustrate the simularity and differences between the two models and accuracy of both to predict the actual occurrance. Also presented is a discussion relative to the modeling techniques of obtaining data for the pedestrian. This presentation illustrates the scaling techniques and actual data obtained in order to accurately simulate the pedestrian.
X