Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Journal Article

Yaw Stability Enhancement of Articulated Commercial Vehicles via Gain-Scheduling Optimal Control Approach

2017-03-28
2017-01-0437
In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
Technical Paper

Why You Should Use Web Based Learning for CAD Training in Your Organization

2013-09-24
2013-01-2439
Since 1992, Caterpillar has invested millions of dollars to purchase CAD software, and spends nearly $2M per year keeping its engineers up-to-date, via instructor lead training (ILT), as new enhancements are introduced. Periodic upgrades to the software also require huge resource (people, costs) commitments for the planning and execution of the training requirements required for a large global workforce. This paper will examine gaps uncovered in the efficiency and effectiveness of the current training process, and the cultural change required as a result of switching from an instructor led environment to a completely web-based solution, which, once deployed, had promised to change the way Caterpillar approached training for the future. The proposed change promised to improve human resource capability by utilizing new technological capabilities, and resulted in improvements in organizational capabilities as well.
Event

Why Attend the Urban Ground Mobility Digital Summit

2024-05-11
If you’re working to balance the implementation of today’s urban ground mobility (UGM) vehicles with tomorrow’s biggest challenges and opportunities, then you belong at the premier of SAE’s Urban Ground Mobility Digital Summit.
Event

Why Attend the Urban Ground Mobility Digital Summit

2024-05-11
If you’re working to balance the implementation of today’s urban ground mobility (UGM) vehicles with tomorrow’s biggest challenges and opportunities, then you belong at the premier of SAE’s Urban Ground Mobility Digital Summit.
Event

Why Attend - 2023 COMVEC™

2024-05-11
Join mobility pofessionals to discuss on-highway, off-highway, construction, industrial, mining, and more.
Technical Paper

Weld Durability Analysis by Equilibrium-Equivalent Structural Stress Approach

2006-10-31
2006-01-3576
Welding has been used extensively in automotive components design due to its flexibility to be applied in manufacturing, high structural strength and low cost. To improve fuel economy and reduce material cost, weight reduction by optimized structural design has been a high priority in auto industry. In the majority of heavy duty vehicle's chassis components design, the ability to predict the mechanical performance of welded joints is the key to success of structural optimization. FEA (finite element analysis) has been used in the industry to analyze welded parts. However, mesh sensitivity and material properties have been major issues due to geometry irregularity, metallurgical degradation of the base material, and inherent residual stress associated with welded joints. An approach, equilibrium-equivalent structural stress method, led by Battelle and through several joint industrial projects (JIP), has been developed.
Technical Paper

Weight Reduction of Shifter Forks using Steel Inserts

2013-09-24
2013-01-2444
Shift quality of a manual transmission is a critical characteristic that is requires utmost care by the designers while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shift fork design, shifter design, gear design, transmission oil selection etc. Designers have realized that shift fork is critical element for improving shift feel of a transmission. This paper focuses upon the reduction in weight of the overall transmission shift system by using steel inserts in aluminum shifter forks. No compromise on the stiffness and strength of the shift fork of a manual transmission is done. Stiffness and strength of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A 5-speed manual transmission is used as an example to illustrate the same.
Technical Paper

Wear of Bearing Materials

1994-04-01
941111
Wear characteristics of four bearing materials have been investigated under different sliding conditions. The bearing materials used were CDA 954, CDA 863, CDA 932, and CDA 938. Using a Taber Wear Tester, a cylinder on a flat geometry was used as a tribo contact pair. All bearing materials in the form of a thick cylindrical disk were subjected to combined sliding-rolling motion against a rotating flat disk. The flat disk was either an abrasive disk, or a very soft steel disk, or a hardened steel disk with and without lubrication. Wear was measured as weight loss after several thousand cycles of rotation. Maximum wear of the bearing materials occurred when the counter body was a very soft steel disk. These results together with the wear rate of each bearing material sliding against four different counter bodies are presented. These results are found to be of practical importance in the design and application of journal bearings made of materials used in this investigation.
Technical Paper

Virtually Evaluated Welds for Powertrain Installation Bracketry and Physically Correlated for First Time Right Designs

2021-09-22
2021-26-0420
Virtual validation of automobile components poses a huge challenge and needs continuous process improvements. One of such challenge in FE modelling of welds and understanding its behavior with respect to physical behavior. With the ongoing development of BSVI line of products in commercial vehicle industry, the virtual validation needs to be accurate and close to the physical behavior of the components. The learning and challenges faced during the previous development is implemented in the current study for weld simulation and correlation activity. The brackets welded to the power train components is taken as a challenge in the present work. Initially weld model was depicted in the CAD and was analyzed in CAE by providing proper FE connection. This practice had lot of flaws, approximations due to perpendicularity and flatness concerns in the models leading to consuming a lot of time in model preparation.
Technical Paper

Virtual Validation of Truck Chassis Using Wheel Force Transducer Data

2019-01-09
2019-26-0332
Lot of CAE (Computer Aided Engineering) based evaluation methods and DVPs (Design Verification Process) are available which are derived from acceleration data, strain data acquired on vehicle over proving ground. Using peak load summary from acceleration inputs generic gravity loads get derived. Use of these loads for CAE analysis are having certain advantages like faster concept level evaluation, broader perspective and confidence on concept design. But there are few limitations of using these methods like it gives only broader perspective of concept design and not able to capture many failure modes and locations as per RWUP (Real World Usage Pattern). This paper explains the advantages of using WFT (Wheel Force Transducer) data for getting more reliable, realistic and co-relating more failure modes on the vehicle. WFT data acquired on all four wheel-ends at wheel center. Each wheel end transducer records 3 translational and 3 rotational forces.
Technical Paper

Virtual Simulation Method to Predict Farm Tractor Durability Load Cycles for Proving Ground Tests

2021-09-22
2021-26-0097
Agriculture machinery industries have always relied on conventional product development process such as laboratory tests, accelerated durability track tests and field tests. Now a days the competitive nature seen in industry concerns need to enhance product quality, time to market and development cost. Utilization of Computer Aided Engineering (CAE) methods not only provide solution but also could play key role in tractor development process. The objective is to assess the performance of virtual simulation model of mid segment farm tractor using Multibody System Model (MBS) for predicting the durability loads on virtual proving ground test tracks. Multibody simulation software MSC ADAMS is used to develop a virtual tractor model. Durability test tracks and simulation is carried out as per company testing standards. Data measurement is done using Wheel Force Transducer (WFT) to study front and rear spindle forces and moments to evaluate the virtual model performance.
Technical Paper

Virtual Prediction of Tractor Front Axle Load and Fatigue Life in Front Loader Application and Validating with Field Measurements

2024-02-06
2024-01-5012
When a specialty tractor is operated by mounting the front loader or backhoes, the loads are distributed proportionately to the front and rear axles. The maximum load and fatigue life were identified as the main parameters in predicting fatigue failure. This paper mainly focuses on predicting front axle loads and fatigue life in front loader applications. To design a new front axle for the loader application, an existing front axle assembly that was designed for orchard, sprayer, and small farm application is selected for study and to extend it for front loader application with minimal design modifications. The major challenge is to estimate the dynamic loads coming to the front axle due to the front loader application and validate it for a different set of load cases as per the design verification plan. Hence a methodology was framed to estimate the actual loads using MBD, validate with field measurements, and verify the new front axle design using those loads in FEA.
Technical Paper

Virtual Instrumentation of a Soil Bin for Improved Precision

1999-09-14
1999-01-2825
The existing instrumentation of a soil bin was retrofitted with virtual instrumentation techniques to achieve improved repeatability and more precise measurements. Current-loop sensors were added to the prime mover for improved speed control. Soil preparation operations were instrumented to determine penetrometer forces as a function of soil penetration depth, soil surface smoothness, compaction force, and soil surface elevation. Test hitch-points for agricultural implements were instrumented with wheatstone bridge force transducers. Implement depth was found with ratiometric linear transducers. Distance and speed determinations utilized an optical encoder with a resolution of 3.0 × 10-4 m. Temperature measurements were also recorded with solid state current transducers.
Technical Paper

Virtual Engineering and Morphing Technology

1998-11-16
982807
As competitive pressures in the automotive industry continue to increase the need for reduction in product development time, OEM's are searching for ways to eliminate non-valued added activities. Today, still too much time is devoted to the laborious process of manipulation of CAD geometry in the advanced stages of a program in order to develop feasibility for emerging design themes, involving the packaging and function of vehicle systems. Technology is being developed that will eliminate much of the tedium currently involved in this design engineering process. As theme iterations or packaging changes occur, CAD models that intelligently link the theme, the packaging, and the engineering “rules” will automatically “morph” into new designs. This Morphing process will execute CAD model changes according to engineering rules that are considered to be industry best practices.
X