Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Transet” Transmission Controller Development System

1996-08-01
961765
A program was developed that provides a user friendly interface for developing and testing shift tables in a powershift transmission. This program is Windows based and runs on an IBM compatible P.C. When coupled with a suitable controller, transmission designers have a useful tool for the development of transmission shift timing. The system is designed to be used in an engine test cell or for actual vehicle tests. This allows the vehicle operator to call up and edit shifts on a P.C. screen and then drive the vehicle using the new shifts. This allows the operator to evaluate results of real time shifts immediately.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“How to Talk to Your Patent Lawyer”

1994-09-01
941768
A patent lawyer suggests ways for an inventor, either an individual inventor or one employed by a corporation, to make the most effective use of his or her patent lawyer. Patentable invention is defined, with the suggestion that inventing creates rights that can be lost by failure to act to preserve them. Secrecy, the duty of disclosure to the Patent and Trademark Office, and cost control are considered in their application to inventions and inventors.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

modeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers

2014-09-30
2014-01-2406
The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
Technical Paper

Yielding Strengh Analysis for Self Supported Pressure Vessels

2002-11-19
2002-01-3479
The hazardous bulk chemical liquid cargo transportation is usually made through highways, using special automotive devices, named semitrailer tank, a kind of mobile tank specially developed to perform this task, manufactured with many types of steel, selected according to the chemical characteristics of the product to be transported. Equipment sizing is made based on specific standards which include specified formulas, loading, and safety factors representing the design criteria of this type of device. Despite of the detailed design criteria for semitrailer tank, it has been observed failure of some pieces of equipment during operation, in a shorter effective life than that one considered in the design phase itself. Considering a detailed study of the stress distribution in this type of equipment, this paper shows a verification of the possibility of yielding failure in the semitrailer tank structure.
Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Work Solenoids-Environmental and Design Considerations for Earthmoving Equipment Applications

1986-04-01
860760
Work solenoids are widely used in household appliances. The environment and design of this type application does not lead to solenoids for the earthmoving industry. This paper presents the environmental effects to be considered when designing a solenoid for the earthmoving industry. It further explains the need for, and type of, test necessary to validate the design. Finally a review of production quality procedures, necessary to insure reliable production parts is discussed.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2012-09-13
HISTORICAL
J1614_201209
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2018-11-21
CURRENT
J1614_201811
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Technical Paper

Winterization Of Construction Equipment - Report of CIMTC Subcommittee XV—Winterization

1957-01-01
570031
SINCE 1954 the CIMTC Subcommittee has been engaged in a program to meet military requirements through industry's production of construction equipment which can give satisfactory cold weather performance down to temperatures of −65 F. Individual contracts for three crawler tractors and one motor grader were negotiated by ERDL for these projects, and their performance is discussed. Industry participation was subsequently expanded to include engineering tests in the cold weather conditions of the Mesabi Iron Range. This joint report of the Winterization Sub-committee of the CIMTC and ERDL Winterization Section consists of separate papers by various members and consultants of this Sub-committee and ERDL personnel.
Standard

Windshield Wiper Systems—Trucks, Buses, and Multipurpose Vehicles

2003-07-29
HISTORICAL
J198_200307
This SAE Recommended Practice establishes for trucks, buses, and multipurpose passenger vehicles with GVW of 4500 kg (10 000 lb) or greater: a Minimum performance requirements for windshield wiping systems. b Uniform test procedures that include those tests that can be conducted on uniform test equipment by commercially available laboratory facilities. c Uniform terminology of windshield wiper system characteristics and phenomena consistent with those found in guides for the use of engineering layout studies to evaluate system performance. d Guides for the design and location of components of the systems for function, servicing of the system, etc. The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Standard

Windshield Wiper Systems - Trucks, Buses, and Multipurpose Vehicles

2020-06-05
CURRENT
J198_202006
This SAE Recommended Practice establishes testing methods and performance requirements for windshield wiping systems on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4500 kg (10000 pounds) or greater and light duty utility vehicles with a GVWR of less than 4500 kg (10000 pounds). The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Standard

Windshield Wiper Systems - Trucks, Buses, and Multipurpose Vehicles

2012-10-11
HISTORICAL
J198_201210
This SAE Recommended Practice establishes for left-hand steer on-road trucks, buses, and multipurpose passenger vehicles with GVW of 4500 kg (10 000 lb) or greater: a Minimum performance requirements for windshield wiping systems. b Uniform test procedures that include those tests that can be conducted on uniform test equipment by commercially available laboratory facilities. c Uniform terminology of windshield wiper system characteristics and phenomena consistent with those found in guides for the use of engineering layout studies to evaluate system performance. d Guides for the design and location of components of the systems for function, servicing of the system, etc. The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Technical Paper

Wind-Averaged Drag Determination for Heavy-Duty Vehicles Using On-Road Constant-Speed Torque Tests

2016-09-27
2016-01-8153
To investigate the feasibility of various test procedures to determine aerodynamic performance for the Phase 2 Greenhouse Gas (GHG) Regulations for Heavy-Duty Vehicles in the United States, the US Environmental Protection Agency commissioned, through Southwest Research Institute, constant-speed torque tests of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Torque was measured at the transmission output shaft and, for most tests, also on each of the drive wheels. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. Measuring wind-averaged drag from on-road tests has historically been a challenge. By collecting data in various wind conditions at multiple speeds over multiple days, a regression-based method was developed to estimate wind-averaged drag with a low precision error for multiple tractor-trailer combinations.
Journal Article

Wind Tunnel and Track Tests of Class 8 Tractors Pulling Single and Tandem Trailers Fitted with Side Skirts and Boat-tails

2012-04-16
2012-01-0104
A 1:10-scale wind tunnel development program was undertaken by the National Research Council of Canada and Airshield Inc. in 1994 to develop trailer side skirts that would reduce the aerodynamic drag of single and tandem trailers. Additionally, a second wind tunnel program was performed by the NRC to evaluate the fuel-saving performance of boat-tail panels when used in conjunction with the skirt-equipped single and tandem trailers. Side skirts on tandem, 8.2-m-long trailers (all model dimensions converted to full scale) were found to reduce the wind-averaged drag coefficient at 105 km/h (65 mi/h) by 0.0758. The front pair of skirts alone produced 75% of the total drag reduction from both sets of skirts and the rear pair alone produced 40% of that from both pairs. The sum of the drag reductions from front and rear skirts separately was 115% of that when both sets were fitted, suggesting an interaction between both.
Technical Paper

Wind Tunnel Test of Cab Extender Incidence on Heavy Truck Aerodynamics

2005-11-01
2005-01-3527
A wind tunnel experiment has been conducted to determine the changes in drag and side force due to the presence and position of cab extenders on a model of a commercial tractor-trailer truck. The geometric variables investigated are the cab extenders angle of incidence, the tractor-trailer spacing and the yaw angle of the vehicle. Three cab extender angles were tested-0°, 15° (out) and -15° (in) with respect to the side of the tractor. The cab and trailer models have the same width and height. The minimum drag coefficient was found for the tractor and trailer combination when the cab extenders were set to 0° angle of incidence with respect to the headwind. This result holds for all yaw angles with moderate gap spacing between the tractor and trailer. This study suggests that commercial tractor-trailer trucks can benefit from adjustable cab extender settings; 0° when using a trailer and -15° when no trailer is used.
Technical Paper

Wind Tunnel Investigation of the Effects of Installation Parameters on Truck Cooling System Performance

1976-02-01
760832
The effect of eight installation and component parameters on cooling system heat rejection and air flow were examined in detail in a wind tunnel facility. A quarter-replicate, two level factorial test plan was followed. Within the ranges of each parameter tested, the fan characteristics and the projection of fan into the shroud are highly significant parameters. The fan to radiator distance, the radiator characteristics, and the fan tip to shroud clearance are significant parameters. The fan to engine block distance and the type of shroud are not significant parameters.
Technical Paper

Wind Tunnel Evaluation of Potential Aerodynamic Drag Reductions from Trailer Aerodynamic Component Combinations

2015-09-29
2015-01-2884
The use of devices to reduce aerodynamic drag on large trailers and save fuel in long-haul, over-the-road freight operations has spurred innovation and prompted some trucking fleets to use them in combinations to achieve even greater gains in fuel-efficiency. This paper examines aerodynamic performance and potential drag reduction benefits of using trailer aerodynamic components in combinations based upon wind tunnel test data. Representations of SmartWay-verified trailer aerodynamic components were tested on a one-eighth scale model of a class 8 sleeper tractor and a fifty three foot, van trailer model. The open-jet wind tunnel employed a rolling floor to reduce floor boundary layer interference. The drag impacts of aerodynamic packages are evaluated for both van and refrigerated trailers. Additionally, the interactions between individual aerodynamic devices is investigated.
Technical Paper

Wind Tunnel Concepts for Testing Heavy Trucks

2016-09-27
2016-01-8144
The trucking industry is being encouraged by environmental and cost factors to improve fuel efficiency. One factor that affects fuel efficiency is the aerodynamic design of the vehicles; that is, the vehicles with lower aerodynamic drag will get better mileage, reducing carbon emissions and reducing costs through lower fuel usage. A significant tool towards developing vehicles with lower drag is the wind tunnel. The automobile industry has made great improvements in fuel efficiency by using wind tunnels to determine the best designs to achieve lower drag. Those wind tunnels are not optimum for testing the larger, longer heavy trucks since the wind tunnels are smaller than needed. The estimated costs for a heavy truck wind tunnel based on automotive wind tunnel technology are quite high. A potential nozzle concept to reduce wind tunnel cost and several other new possible approaches to lower wind tunnel costs are presented.
X