Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“SHIFT-MATE” A Fuel Efficiency Monitor

1985-12-01
852340
The SHIFT-MATE is a dashboard mounted computer based device that cues a truck driver to shift more efficiently. Through electronic circuitry, key vehicle parameters are monitored, computed, then via graphic display, instructs the driver when to shift for improved fuel economy. The theory of operation is described in the text.
Technical Paper

“EVO: New Metallic Substrate Development for Commercial Vehicle and Non-Road Applications”

2021-09-22
2021-26-0211
Affordable, efficient and durable catalytic converters for the Commercial Vehicle and Non-Road industry in all countries are required to reduce vehicle emissions under real world driving conditions and fulfill future legal requirements. Specially for India traffic conditions and payload to engine size conditions new cost-effective solutions are needed to participate in a cleaner and healthier environment. Metallic substrates with structured foils like the Transversal StructureTM (TS) or the Longitudinal StructureTM (LS) have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Now Vitesco Technologies is developed a new Substrate for Heavy duty applications that specifically maintains the geometric surface area at a very high level and improves further the mass transport of the pollutants, which potentially leads together to very high pollutant conversion rates.
Technical Paper

modeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers

2014-09-30
2014-01-2406
The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
Technical Paper

Worldwide Truck Electronic Systems -- Trends for the 90s

1986-11-01
861970
It is the goal of this paper, to discuss the impact of electronics on modern day commercial vehicles an buses. Seen from the position of advanced engineering of an European commercial vehicle manufacturer, the emphasis will be placed on the mechanical-electronical system itself, rather than the electronics themselves. User friendly, logic protected systems will minimize operator unfamiliarity and misapplication and will offer not only component control, but shortly the integration of all of these subsystems in the total vehicle control. Total vehicle control will be the ultimate result, when the driver, the truck and the environment are brought together. Such vehicles will be more responsive, safer and easier to drive than today's commercial vehicles and buses and offer a cost effective utilization of these new technologies to the customer.
Technical Paper

Work Solenoids-Environmental and Design Considerations for Earthmoving Equipment Applications

1986-04-01
860760
Work solenoids are widely used in household appliances. The environment and design of this type application does not lead to solenoids for the earthmoving industry. This paper presents the environmental effects to be considered when designing a solenoid for the earthmoving industry. It further explains the need for, and type of, test necessary to validate the design. Finally a review of production quality procedures, necessary to insure reliable production parts is discussed.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2010-05-11
HISTORICAL
J1614_201005
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.8 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2012-09-13
HISTORICAL
J1614_201209
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Standard

Wiring Distribution Systems for Off-Road, Self-Propelled Work Machines

2018-11-21
CURRENT
J1614_201811
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
Technical Paper

Wiremesh Mounting System for Low Temperature Diesel Catalytic Converters

2005-11-01
2005-01-3508
Knitted wiremesh along with radial gas tight seals provide reliable mounting system for low temperature underbody converters. The compression characteristics of the wiremesh is modified by wire material, wire diameter, wire geometry, mesh crimp heights; wire density, wiremesh courses per inch, needle count, number of strands, wiremesh temper, wiremesh surface profile and surface characteristics. The radial mounting pressure provided by the wiremesh is matched with the mounting pressure requirement. Wiremesh systems can be tailored to any required radial mounting pressure from conventional to ultra thin-wall substrates. The wiremesh mounting system is proven durable, without any failure on more than 25 million underbody converters in light duty vehicles. Cp and Cpk show the capability of the manufacturing process. Thus the wiremesh mounting support is a viable alternate for low temperature gasoline and diesel applications.
Standard

Windshield Wiper Systems - Trucks, Buses, and Multipurpose Vehicles

2020-06-05
CURRENT
J198_202006
This SAE Recommended Practice establishes testing methods and performance requirements for windshield wiping systems on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4500 kg (10000 pounds) or greater and light duty utility vehicles with a GVWR of less than 4500 kg (10000 pounds). The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Standard

Windshield Wiper Systems - Trucks, Buses, and Multipurpose Vehicles

2012-10-11
HISTORICAL
J198_201210
This SAE Recommended Practice establishes for left-hand steer on-road trucks, buses, and multipurpose passenger vehicles with GVW of 4500 kg (10 000 lb) or greater: a Minimum performance requirements for windshield wiping systems. b Uniform test procedures that include those tests that can be conducted on uniform test equipment by commercially available laboratory facilities. c Uniform terminology of windshield wiper system characteristics and phenomena consistent with those found in guides for the use of engineering layout studies to evaluate system performance. d Guides for the design and location of components of the systems for function, servicing of the system, etc. The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Journal Article

Windshield Glare from Bus Interiors: Potential Impact on City Transit Drivers at Night

2019-11-15
Abstract Windshield glare at night is a safety concern for all drivers. Public transit bus drivers also face another concern about glare caused by interior lighting sources originally designed for passenger safety. The extent to which interior light reflections contribute to glare is unknown. Unique methods for measuring discomfort and disability glare during bus driving were developed. An initial simulation study measured windshield luminance inside of a New Flyer D40LF diesel bus parked in a controlled, artificial, totally darkened test environment. Findings indicated significant disability glare (from elevated luminance) in the drivers’ primary field of view due to interior reflections. Any reduction in contrast would result in less prominent glare if actual driving conditions differ. To assess this, levels of windshield glare were also measured with the bus parked on the roadside under the “background glow” of the urban environment.
Standard

Windshield Defrosting Systems Test Procedure and Performance Requirements—Trucks, Buses, and Multipurpose Vehicles

2000-09-29
HISTORICAL
J381_200009
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Current engineering practice prescribes that for laboratory evaluation of defroster systems, an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test results, even though under actual conditions such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area.
Technical Paper

Wind-Averaged Drag Determination for Heavy-Duty Vehicles Using On-Road Constant-Speed Torque Tests

2016-09-27
2016-01-8153
To investigate the feasibility of various test procedures to determine aerodynamic performance for the Phase 2 Greenhouse Gas (GHG) Regulations for Heavy-Duty Vehicles in the United States, the US Environmental Protection Agency commissioned, through Southwest Research Institute, constant-speed torque tests of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Torque was measured at the transmission output shaft and, for most tests, also on each of the drive wheels. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. Measuring wind-averaged drag from on-road tests has historically been a challenge. By collecting data in various wind conditions at multiple speeds over multiple days, a regression-based method was developed to estimate wind-averaged drag with a low precision error for multiple tractor-trailer combinations.
Journal Article

Wind Tunnel and Track Tests of Class 8 Tractors Pulling Single and Tandem Trailers Fitted with Side Skirts and Boat-tails

2012-04-16
2012-01-0104
A 1:10-scale wind tunnel development program was undertaken by the National Research Council of Canada and Airshield Inc. in 1994 to develop trailer side skirts that would reduce the aerodynamic drag of single and tandem trailers. Additionally, a second wind tunnel program was performed by the NRC to evaluate the fuel-saving performance of boat-tail panels when used in conjunction with the skirt-equipped single and tandem trailers. Side skirts on tandem, 8.2-m-long trailers (all model dimensions converted to full scale) were found to reduce the wind-averaged drag coefficient at 105 km/h (65 mi/h) by 0.0758. The front pair of skirts alone produced 75% of the total drag reduction from both sets of skirts and the rear pair alone produced 40% of that from both pairs. The sum of the drag reductions from front and rear skirts separately was 115% of that when both sets were fitted, suggesting an interaction between both.
Technical Paper

Wind Tunnel Test of Cab Extender Incidence on Heavy Truck Aerodynamics

2005-11-01
2005-01-3527
A wind tunnel experiment has been conducted to determine the changes in drag and side force due to the presence and position of cab extenders on a model of a commercial tractor-trailer truck. The geometric variables investigated are the cab extenders angle of incidence, the tractor-trailer spacing and the yaw angle of the vehicle. Three cab extender angles were tested-0°, 15° (out) and -15° (in) with respect to the side of the tractor. The cab and trailer models have the same width and height. The minimum drag coefficient was found for the tractor and trailer combination when the cab extenders were set to 0° angle of incidence with respect to the headwind. This result holds for all yaw angles with moderate gap spacing between the tractor and trailer. This study suggests that commercial tractor-trailer trucks can benefit from adjustable cab extender settings; 0° when using a trailer and -15° when no trailer is used.
Technical Paper

Wind Tunnel Evaluation of Potential Aerodynamic Drag Reductions from Trailer Aerodynamic Component Combinations

2015-09-29
2015-01-2884
The use of devices to reduce aerodynamic drag on large trailers and save fuel in long-haul, over-the-road freight operations has spurred innovation and prompted some trucking fleets to use them in combinations to achieve even greater gains in fuel-efficiency. This paper examines aerodynamic performance and potential drag reduction benefits of using trailer aerodynamic components in combinations based upon wind tunnel test data. Representations of SmartWay-verified trailer aerodynamic components were tested on a one-eighth scale model of a class 8 sleeper tractor and a fifty three foot, van trailer model. The open-jet wind tunnel employed a rolling floor to reduce floor boundary layer interference. The drag impacts of aerodynamic packages are evaluated for both van and refrigerated trailers. Additionally, the interactions between individual aerodynamic devices is investigated.
Technical Paper

Wind Tunnel Concepts for Testing Heavy Trucks

2016-09-27
2016-01-8144
The trucking industry is being encouraged by environmental and cost factors to improve fuel efficiency. One factor that affects fuel efficiency is the aerodynamic design of the vehicles; that is, the vehicles with lower aerodynamic drag will get better mileage, reducing carbon emissions and reducing costs through lower fuel usage. A significant tool towards developing vehicles with lower drag is the wind tunnel. The automobile industry has made great improvements in fuel efficiency by using wind tunnels to determine the best designs to achieve lower drag. Those wind tunnels are not optimum for testing the larger, longer heavy trucks since the wind tunnels are smaller than needed. The estimated costs for a heavy truck wind tunnel based on automotive wind tunnel technology are quite high. A potential nozzle concept to reduce wind tunnel cost and several other new possible approaches to lower wind tunnel costs are presented.
X