Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Thermal Energy Management Methods Applied to Diesel Exhaust System Tailpipes

2006-10-31
2006-01-3476
Diesel Particulate Filter Systems offer excellent opportunities to reduce the emitted soot through their filtration potential, but periodic burning of the collected soot is necessary. This is referred to as Regeneration, which occurs every few hundred miles and requires gas temperatures to increase to nearly 600°C. As the soot burns, it creates an exothermic response, increasing DPF exit temperatures potentially to 800°C or higher. Such extremes create thermal management concerns as the hot gases exit the tailpipe, particularly during low speeds or idling conditions. Methods to manage such thermal concerns are presented in this study, evaluating passive and active options.
Technical Paper

Performance Characterization of a Thermal Regeneration Unit for Exhaust Emissions Controls Systems

2011-09-13
2011-01-2208
Diesel Particulate Filters have been successfully applied for several years to reduce Particulate Matter (PM) emissions from on-highway applications, and similar products are now also applied in off-highway markets and retrofit solutions. As soot accumulates on the filter, backpressure increases, and eventually exhaust temperatures are elevated to burn off the soot, actively or passively. Unfortunately, in many real-world instances, some duty cycles never achieve necessary temperatures, and the ability of the engine and/or catalyst to elevate exhaust temperatures can be problematic, resulting in overloaded filters that have become clogged, necessitating service attention. An autonomous heat source is developed to eliminate such risks, applying an ignition-based combustor that leverages the current diesel fuel supply, providing necessary temperatures when needed, regardless of engine operating conditions.
Technical Paper

Mount Design Characteristics for Non-Round Substrates

2006-10-31
2006-01-3506
Non-round substrates are often applied in exhaust applications with limited packaging space, including commercial vehicles, and the shape of their metallic shells are often designed to be similar, but enlarged to accommodate the layer of support mat. This gap is often planned to be constant around its perimeter, but measured data indicates this rarely occurs. This study evaluates a particular oval converter mount design and applies a unique method to couple finite-element modeling with support mat response characteristics to predict non-round shell shapes, planning for uneven gap distributions. This method allows for increased awareness of acceptable mount designs, as well as improved manufacturing and durability performance, which becomes even more important within commercial vehicle design applications, subject to larger substrate sizes, increased backpressures, and extended mileage requirements.
Technical Paper

DPF Acoustic Performance: An Evaluation of Various Substrate Materials and Soot Conditions

2011-09-13
2011-01-2198
The Diesel Particulate Filter (DPF) is used on today's diesel vehicles to reduce the amount of soot being released into the atmosphere from diesel exhaust. The DPFs are typically wall-flow filtration devices of various extruded porous ceramic materials with more than 95% efficiency. Once the filter has loaded with soot, the DPF undergoes regeneration where the exhaust temperature is raised to burn off the soot. With the DPF being relatively new aftertreatment technology, the exhaust industry must investigate the acoustic and performance effects of the DPF when added to an exhaust system. In many applications the DPF replaces the exhaust muffler because of limited packaging space. The acoustic performance of the DPF changes with increasing soot density and exhaust backpressure. The acoustic response is measured with physical testing at multiple soot load densities. This study is part of a graduation thesis project for Kettering University[1].
X