Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Terrain Streaming for Real-Time Vehicle Dynamics

2024-04-09
2024-01-2659
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time.
Magazine

Tech Briefs: May 2018

2018-05-01
New Technologies Tackle UAV Challenges Robotic Applique Kits Leverage Existing Assets Educating UGVs Implementing AI Advancements in Thermal Image Training Data Sets Protecting Critical Data on Unmanned Underwater Platforms Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation: How to Operate the SIL New features include the creation of virtual environments that match real-world gunnery test courses. Soldier-Robot Team Communication: An Investigation of Exogenous Orienting Visual Display Cues and Robot Reporting Preferences The effective use of robots to conduct dangerous missions depends on accurate man-machine communications. Soft Robotic Fish Swims Alongside Real Ones in Coral Reefs GPS Enabled Semi-Autonomous Robot Combining GPS signals with acoustic and encoder data gives a robot the ability to determine its location and orientation within a reference frame.
Magazine

Tech Briefs: August 2018

2018-08-01
Designing a High-Speed Decoy Unmanned Aerial Vehicle (UAV) Using Thermoplastics in Aerospace Applications In-Flight Real-Time Avionics Adaptation Using Turbine Flow Meters for Aerospace Test and Measurement Applications Communicating from Space: The Front End of Multiscale Modeling Laser-Based System Could Expand Space-to-Ground Communication Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Research could lead to development of a composite material that can be processed at a low temperature and still be used at 1000°F. Permeation Tests on Polypropylene Fiber Materials Study attempts to determine if polypropylene nanofiber materials can be used in air filtration systems to remove toxic vapors. Inter-Laboratory Combat Helmet Blunt Impact Test Method Comparison Ensuring consistent test methods could reduce the risk of head injuries.
Standard

Standard Practice for Human Systems Integration

2019-02-08
HISTORICAL
SAE6906
This Human Systems Integration (HSI) Standard Practice identifies the Department of Defense (DoD) approach to conducting HSI programs as part of procurement activities. This Standard covers HSI processes throughout design, development, test, production, use, and disposal. Depending on contract phase and/or complexity of the program, tailoring should be applied. The scope of this standard includes prime and subcontractor HSI activities; it does not include Government HSI activities, which are covered in the DoD HSI Handbook. HSI programs should use the latest version of standards and handbooks listed below, unless a particular revision is specifically cited in the contract.
Standard

Requirements for Aviation, Space, and Defense Auditor Training, Development, Competence, and Authentication

2020-11-11
CURRENT
AS9104/3A
This document defines the minimum requirements for auditors, CBs, Auditor Authentication Bodies (AABs), Training Provider Approval Bodies (TPABs), and Training Providers (TPs) who participate in the IAQG Industry Controlled Other Party (ICOP) scheme. The requirements in this standard supplement those defined within the 9104/1, 9104/2, ISO/IEC 17021-1, and ISO/IEC 17021-3 standards. Data protection for the parties subject to this document and other relevant requirements of the ICOP scheme are managed via bi-lateral contracts between the joint controllers of the data.
Article

Quality management experts provide guidance on AS9100 standard

2021-11-04
Quality management professionals across the global aerospace and defense community are convening for one hour – Wednesday, October 27th, starting at 10 am Pacific Daylight Time (PDT) – to discuss the AS9100 international standard. Register to take part in the free AeroTech webinar, hosted by SAE International and Tektronix, designed to help manufacturers, contractors, and subcontractors throughout the global aviation, space, and defense supply chain keep pace with and meet the requirements of AS9100 international quality management system standard.
Journal Article

Predictive Modeling of Aircraft Dynamics Using Neural Networks

2022-05-25
Abstract Fighter pilots must study models of aircraft dynamics before learning complex maneuvers and tactics. Similarly, autonomous fighter aircraft applications may benefit from a model-based learning approach. Instead of using a preexisting physics model of a given aircraft, a machine learning system can learn a predictive model of the aircraft physics from training data. Furthermore, it can model interactions between multiple friendly aircraft, enemy aircraft, and the environment. Such a system can also learn to represent state variables that are not directly observable, as well as dynamics that are not hard coded. Existing model-based methods use a deep neural network that takes observable state information and agent actions as input and provides predictions of future observations as output. The proposed method builds upon this approach by adding a residual feedforward skip connection from some of the inputs to all of the outputs of the deep neural network.
Technical Paper

On Simulating Sloshing in Vehicle Dynamics

2018-04-03
2018-01-1110
We present an approach in which we use simulation to capture the two-way coupling between the dynamics of a vehicle and that of a fluid that sloshes in a tank attached to the vehicle. The simulation is carried out in and builds on support provided by two modules: Chrono::FSI (Fluid-Solid Interaction) and Chrono::Vehicle. The dynamics of the fluid phase is governed by the mass and momentum (Navier-Stokes) equations, which are discretized in space via a Lagrangian approach called Smoothed Particle Hydrodynamics. The vehicle dynamics is the solution of a set of differential algebraic equations of motion. All equations are discretized in time via a half-implicit symplectic Euler method. This solution approach is general - it allows for fully three dimensional (3D) motion and nonlinear transients. We demonstrate the solution in conjunction with the simulation of a vehicle model that performs a constant radius turn and double lane change maneuver.
Technical Paper

Numerical Investigation of the Aerodynamic Characteristics of a Missile Geometry at Mach 4

2024-06-01
2024-26-0443
The aim of this paper is to present a numerical analysis of high-speed flows over a missile geometry. The N1G missile has been selected for our study, which is subjected to a high-speed flow at Mach 4 over a range of Angle of attack (AoA) from 0° to 6°. The analysis has been conducted for a 3-dimensional missile model using ANSYS environment. The study contemplates to provide new insights into the missile aerodynamic performance which includes the coefficient of lift (CL) , coefficient of drag (CD) and coefficient of moment (CM) using computational fluid dynamics (CFD). As there is a lack of availability of data for missile geometry, such as free stream conditions and/or the experimental data for a given Mach number, this paper intends to provide a detailed analysis at Mach 4. As the technology is advancing, there is a need for high-speed weapons (missiles) with a good aerodynamic performance, which intern will benefit in reduction of fuel consumption.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Numerical Analysis of Armored Fighting Vehicle Escape Hatch Subjected to Mine Blast Loading Using Coupled Eulerian-Lagrangian Technique

2023-03-30
Abstract This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

2018-09-03
2018-36-0232
While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.
Book

Fundamentals of Geometric Dimensioning and Tolerancing 2018: Using Critical Thinking Skills, Revised Edition

2021-12-02
The Fundamentals of Geometric Dimensioning and Tolerancing 2018 Using Critical Thinking Skills by Alex Krulikowski reflects the technical content found in the latest release of the ASME Y14.5-2018 Standard. This book includes several key features that aid in the understanding of geometric tolerancing. Each of the textbook's 26 chapters focuses on a major topic that must be mastered to be fluent in the fundamentals of GD&T. Each topic includes a goal that is defined and supported by a set of performance objectives that include real-world examples, verification principles and methods, and chapter summaries. There are more than 260 performance objectives that describe specific, observable, measurable actions that the student must accomplish to demonstrate mastery of each goal. Learning is reinforced by completing three types of exercise problems, along with critical thinking questions that promote application of GD&T on the job.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Journal Article

A Novel Flight Dynamics Modeling Using Robust Support Vector Regression against Adversarial Attacks

2023-03-24
Abstract An accurate Unmanned Aerial System (UAS) Flight Dynamics Model (FDM) allows us to design its efficient controller in early development phases and to increase safety while reducing costs. Flight tests are normally conducted for a pre-established number of flight conditions, and then mathematical methods are used to obtain the FDM for the entire flight envelope. For our UAS-S4 Ehecatl, 216 local FDMs corresponding to different flight conditions were utilized to create its Local Linear Scheduled Flight Dynamics Model (LLS-FDM). The initial flight envelope data containing 216 local FDMs was further augmented using interpolation and extrapolation methodologies, thus increasing the number of trimmed local FDMs of up to 3,642. Relying on this augmented dataset, the Support Vector Machine (SVM) methodology was used as a benchmarking regression algorithm due to its excellent performance when training samples could not be separated linearly.
Technical Paper

A Fast Running Loading Methodology for Ground Vehicle Underbody Blast Events

2018-04-03
2018-01-0620
A full-system, end-to-end blast modeling and simulation of vehicle underbody buried blast events typically includes detailed modeling of soil, high explosive (HE) charge and air. The complex computations involved in these simulations take days to just capture the initial 50-millisecond blast-off phase, and in some cases, even weeks. The single most intricate step in the buried blast event simulation is in the modeling of the explosive loading on the underbody structure from the blast products; it is also one of the most computationally expensive steps of the simulation. Therefore, there is significant interest in the modeling and simulation community to develop various methodologies for fast running tools to run full simulation events in quicker turnarounds of time.
X