Refine Your Search

Topic

Author

Search Results

Research Report

Unsettled Issues Concerning Integrated Vehicle Health Management Systems and Maintenance Credits

2020-05-27
EPR2020006
The “holy grail” for prognostics and health management (PHM) professionals in the aviation sector is to have integrated vehicle health management (IVHM) systems incorporated into standard aircraft maintenance policies. Such a change from current aerospace industry practices would lend credibility to this field by validating its claims of reducing repair and maintenance costs and, hence, the overall cost of ownership of the asset. Ultimately, more widespread use of advanced PHM techniques will have a positive impact on safety and, for some cases, might even allow aircraft designers to reduce the weight of components because the uncertainty associated with estimating their predicted useful life can be reduced. We will discuss how standard maintenance procedures are developed, who the various stakeholders are, and – based on this understanding - outline how new PHM systems can gain the required approval to be included in these standard practices.
Article

Turn growing complexity into competitive advantage through digitalization

2021-03-10
While the pandemic continues, aerospace companies are rising to embrace new and emerging challenges at a time when there’s so much innovation. This innovation can be seen in the emergence of urban air mobility (UAM), the rebirth of supersonic flight, the drive towards a “zero emission” aircraft, and the continued use of autonomous drones for delivery, freight, search & rescue, and defense. There are exciting new developments in space as companies are developing products for commercial exploration and space tourism, and new ways to launch satellites. A new generation of engineering is also emerging in the defense sector and its development of not only aircraft, but also ships, tankers, and even flight trainers.
Technical Paper

System Concept Effectiveness

1966-02-01
660728
Frequently, a choice between system concepts must be made on the basis of something other than a detailed evaluation of the design effectiveness of these systems. This paper develops a rudimentary analysis process for use in addressing this problem.
Standard

Sistemas de Gestão da Qualidade - Requisitos de Auditoria para Organizações de Aviação, Aeroespacial e Defesa

2016-10-31
CURRENT
AS9101F_PTBR
Para garantir a satisfação dos clientes as organizações de defesa, aviação e aeroespacial devem fornecer e melhorar continuamente produtos e serviços, seguros e confiáveis, que atendam ou excedam os requisitos legais e regulamentares aplicáveis dos clientes. A globalização da indústria e a diversidade resultante das necessidades e expectativas regionais e nacionais têm dificultado este objetivo. As organizações têm o desafio de comprar produtos e serviços de fornecedores em todo o mundo, em todos os níveis da cadeia de suprimento. Os fornecedores têm o desafio de fornecer produtos e serviços a vários clientes com diferentes necessidades e expectativas de qualidade.
Book

SAE International's Dictionary of Testing, Verification, and Validation

2023-10-30
Created to elevate expertise in testing, verification, and validation with industry-specific terminology, readers are empowered to navigate the complex world of quality assurance. From foundational concepts to advanced principles, each entry provides clarity and depth, ensuring the reader becomes well-versed in the language of precision. This dictionary is an indispensable companion for both professionals and students seeking to unravel the nuances of testing methodologies, verification techniques, and validation processes. Readers will be equipped with the tools to communicate effectively, make informed decisions, and excel in projects. In addition, references to SAE Standards are included to direct the reader to additional information beyond a practical definition.
Standard

Requirements for Conducting Audits of Aviation, Space, and Defense Quality Management Systems

2022-11-29
CURRENT
AS9101G
This standard defines requirements for the preparation and execution of the audit process. In addition, it defines the content and composition for the audit reporting of conformity and process effectiveness to the 9100-series standards, the organization's QMS documentation, and customer and statutory/regulatory requirements. The requirements in this standard are additions or represent changes to the requirements and guidelines in the standards for conformity assessment, auditing, and certification as published by ISO/IEC (i.e., ISO/IEC 17000, ISO/IEC 17021-1). When there is conflict with these standards, the requirements of the 9101 standard shall take precedence.
Standard

Reliability, Maintainability, and Sustainability Terms and Definitions

2020-04-21
CURRENT
J3119_202004
A glossary of basic terms and definitions useful for working in reliability, maintainability, and sustainability (RMS). The terms used in most engineering technologies tend to be physical characteristics such as speed, rate of turn, and fuel consumption. While they may require very careful definition and control of the way in which they are measured, the terms themselves are not subject to different interpretations. Reliability, maintainability, and sustainability (RMS), however, use terms that are defined in a variety of ways with multiple interpretations. The variety of definitions given to a single term creates problems when trying to compare the performance of one system to another. To eliminate the confusion, a literature search that listed current and past RMS terms and definitions was conducted. The literature search included input from the U.S. military, UK military, NATO, SAE, IEEE, NASA, ISO, university research, and other publications.
Standard

Reliability Physics Analysis of Electrical, Electronic, and Electromechanical Equipment, Modules and Components

2021-12-30
CURRENT
J3168_202112
This recommended practice has been developed for use in any EEE system used in the AADHP industries. RPA is especially important to AADHP systems, which are often safety critical applications that must operate for long times in rugged environments. These EEE systems often use EEE components that were originally designed and produced for more benign consumer applications. Although the focus of this recommended practice is on AADHP applications, the process described herein is not limited to AADHP and may be used for EEE systems and components in any industry.
Article

Quality management experts provide guidance on AS9100 standard

2021-11-04
Quality management professionals across the global aerospace and defense community are convening for one hour – Wednesday, October 27th, starting at 10 am Pacific Daylight Time (PDT) – to discuss the AS9100 international standard. Register to take part in the free AeroTech webinar, hosted by SAE International and Tektronix, designed to help manufacturers, contractors, and subcontractors throughout the global aviation, space, and defense supply chain keep pace with and meet the requirements of AS9100 international quality management system standard.
Standard

Quality Management Systems - Requirements for Aviation, Space, and Defense Organizations

2016-09-20
CURRENT
AS9100D
This standard includes ISO 9001:20152 quality management system requirements and specifies additional aviation, space, and defense industry requirements, definitions, and notes. It is emphasized that the requirements specified in this standard are complementary (not alternative) to customer and applicable statutory and regulatory requirements. If there is a conflict between the requirements of this standard and customer or applicable statutory or regulatory requirements, the latter shall take precedence.
Training / Education

Quality Function Deployment Transforming Voice of the Customer into Engineering Specifications

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Currently in the industry, especially within China, product requirement development is more of an experience-based process rather than a scientific methodology. This course addresses this issue and provides a more process-driven method for better requirement development through the Quality Function Deployment (QFD) methodology.  Real industrial examples are used to demonstrate how to systematically convert the voice of the customer data to engineering specifications using QFD.
Standard

Perspectives on Integrating Structural Health Monitoring Systems into Fixed-Wing Military Aircraft

2019-09-18
CURRENT
AIR6245
This SAE Aerospace Information Report (AIR) is prepared for stakeholders seeking information about the evolution, integration, and approval of SHM technologies for military aircraft systems. The report provides this information in the form of (a) two military organizations’ perspectives on requirements, and (b) general SHM challenges and industry perspectives. The report only provides information to generate awarness of prespectives for military aircraft and, hence, assists those who are involved in developing SHM systems understanding the broad range of regulations, requirements, and standards published by military organizations that are available in the public domain from the military organizations.
Technical Paper

Optimal Use Cases for Electric and Hybrid Tactical Vehicles

2024-04-09
2024-01-2662
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army.
Technical Paper

Numerical Investigation of the Aerodynamic Characteristics of a Missile Geometry at Mach 4

2024-06-01
2024-26-0443
The aim of this paper is to present a numerical analysis of high-speed flows over a missile geometry. The N1G missile has been selected for our study, which is subjected to a high-speed flow at Mach 4 over a range of Angle of attack (AoA) from 0° to 6°. The analysis has been conducted for a 3-dimensional missile model using ANSYS environment. The study contemplates to provide new insights into the missile aerodynamic performance which includes the coefficient of lift (CL) , coefficient of drag (CD) and coefficient of moment (CM) using computational fluid dynamics (CFD). As there is a lack of availability of data for missile geometry, such as free stream conditions and/or the experimental data for a given Mach number, this paper intends to provide a detailed analysis at Mach 4. As the technology is advancing, there is a need for high-speed weapons (missiles) with a good aerodynamic performance, which intern will benefit in reduction of fuel consumption.
Technical Paper

Numerical Analysis of Lightweight Materials and their Combinations to Understand their Behaviour against High Pressure Shock Loading

2023-05-25
2023-28-1311
Materials play a key role in our day to day life and have shaped the industrial revolution to a great extent. Right selection of material for meeting a particular objective is the key to success in today’s world where the cost as well as sustainability of any equipment or a system have assumed greater significance than ever before. In automotive industry, materials have a definitive role as far as the mobility and safety is concerned. Materials that can absorb the required energy or impact can be manufactured through different manufacturing as well as metallurgical processes which involves appropriate heat treatment and bringing correct chemical compositions etc. However, they can also be formed by simpler methods such as combining certain materials together in the form of layered combinations to form light weight composites.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Numerical Analysis of Armored Fighting Vehicle Escape Hatch Subjected to Mine Blast Loading Using Coupled Eulerian-Lagrangian Technique

2023-03-30
Abstract This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits.
Journal Article

Nonlinear Multi-Fidelity Bayesian Optimization: An Application in the Design of Blast Mitigating Structures

2022-03-29
2022-01-0790
A common scenario in engineering design is the availability of several black-box functions that describe an event with different levels of accuracy and evaluation cost. Solely employing the highest fidelity, often the most expensive, black-box function leads to lengthy and costly design cycles. Multi-fidelity modeling improves the efficiency of the design cycle by combining information from a small set of observations of the high-fidelity function and large sets of observations of the low-fidelity, fast-to-evaluate functions. In the context of Bayesian optimization, the most popular multi-fidelity model is the auto-regressive (AR) model, also known as the co-kriging surrogate. The main building block of the AR model is a weighted sum of two Gaussian processes (GPs). Therefore, the AR model is well suited to exploit information generated by sources that present strong linear correlations.
X