Refine Your Search

Topic

Search Results

Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Journal Article

Towards Standardising Methods for Reporting the Embodied Energy Content of Aerospace Products

2017-08-29
2017-01-9002
Within the aerospace industry there is a growing interest in evaluating and reducing the environmental impacts of products and related risks to business. Consequently, requests from governments, customers, manufacturers, and other interested stakeholders, for environmental information about aerospace products are becoming widespread. Presently, requests are inconsistent and this limits the ability of the aerospace industry to meet the informational needs of various stakeholders and reduce the environmental impacts of their products in a cost-effective manner. Energy consumption is a significant business cost, risk, and a simple proxy value for overall environmental impact. This paper presents the initial research carried out by an academic and industry consortium to develop standardised methods for calculating and reporting the embodied manufacturing energy content of aerospace products.
Technical Paper

The Effect of Wing Leading Edge Contamination on the Stall Characteristics of Aircraft

2007-09-24
2007-01-3286
Lessons learned from analysis of in-service icing incidents are described. The airfoil and wing design factors that define an aircraft's natural stall characteristics are explored, including the aerodynamic effects of contamination. Special attention is given to contamination in the form of “roughness” along wing leading edges typical of frost. In addition, the key aerodynamic effects of ground proximity and sideslip/crosswind during the take-off rotation are described. An empirical method, that can be used to predict a wing's sensitivity to wing leading edge roughness, is demonstrated. The paper explores the in-service differences of aircraft that incorporate “hard”, “supercritical” and “slatted” wings. The paper attempts to explain why the statistical evidence appears to favor the slatted wing for winter operations.
Journal Article

Reliability Modeling Approach and Hydraulic Actuators Designed Hinge-Moment Capability

2013-09-17
2013-01-2232
The hydraulic actuators are used to power flight control surfaces of the aircraft and to ensure surface movement. A system of two or three actuators is usually designed depending on the surface and intuitively these actuators are considered as a redundant architecture from a reliability and functionality point of view. The proper reliability modeling of the system of actuators must consider the system's functionality and design constraints for the remaining available actuator hinge-moment in the event of a partial or total actuator failure. As a result, this will affect the reliability assessment of that design. Furthermore, this system of actuators is also designed to provide a second function involving an assurance of the surface stiffness and damping. Generally, this second function does not require necessarily the same number of available actuators in order to be fully provided.
Journal Article

Reliability Improvement of Lithium Cells Using Laser Welding Process with Design of Experiments

2013-09-17
2013-01-2201
Manufacturing operations introduce unreliability into hardware that is not ordinarily accounted for by reliability design engineering efforts. Inspections and test procedures normally interwoven into fabrication processes are imperfect, and allow defects to escape which later result in field failures. Therefore, if the reliability that is designed and developed into an equipment/system is to be achieved, efforts must be applied during production to insure that reliability is built into the hardware. There are various ways to improve the reliability of a product. These include: Simplification Stress reduction/strength enhancement Design Improvement Using higher quality components Environmental Stress Screening before shipment Process Improvements, etc. This paper concentrates on ‘Manufacturing Process Improvement’ effort through the use of design of experiments, (DOE). Hence, improved levels of reliability can be achieved.
Journal Article

Processing CSeries Aircraft Panels

2013-09-17
2013-01-2149
Bombardier faced new manufacturing process challenges drilling and fastening CSeries* aircraft panels with multi-material stacks of composite (CFRP), titanium and aluminum in which Gemcor responded with a unique, flexible CNC Drivmatic® automatic fastening system, now in production at Bombardier. This joint technical paper is presented by Bombardier, expounding on manufacturing process challenges with the C Series aircraft design requirements and Gemcor presenting a unique solution to automatically fasten CFRP aft fuselage panels and aluminum lithium (Al Li) cockpit panels with the same CNC Drivmatic® system. After installation and preliminary acceptance at Bombardier, the CNC system was further enhanced to automatically fasten the carbon fiber pressure bulkhead dome assembly.
Journal Article

Process Change: Redesign of Composite Parts for Structural Integrity

2013-09-17
2013-01-2328
The objective of this document is to present the methodology used to verify the structural integrity of a redesigned composite part. While shifting the manufacturing process of a composite part from pre-impregnated to a liquid resin injection process, the Composites Development team at Bombardier Aerospace had to redesign the component to a new set of design allowables. The Integrated Product Development Team (IPDT) was able to quickly provide a turnkey solution that assessed three aspects of airframe engineering: Design, Materials & Processes (M&P) and Stress. The focus of this paper will be the stress substantiation process led by the Stress Engineers. It will also bring up the synergies with M&P that are unique to the IPDT approach. The stress substantiation process required three distinct checks be confirmed.
Journal Article

Probability Assessment of the Fuel Tank Structural Feature Failures

2011-10-18
2011-01-2518
The paper provides an approach to establish compliance with current regulatory standards applicable to lightning protection of the fuel tank structure for Non-Fault Tolerant Feature Failures (NFTFF) through a numerical probability assessment. The proposed procedure is using the criteria defined in the FAA Policy Guidance for fuel tank structural lightning protection and is aligned with the regulatory path described as petitioning for an exemption. Failure modes of structural components for which fault tolerance has been shown to be impractical need to be addressed and the overall likelihood of fuel vapour ignition due to these failure modes must be shown to be extremely improbable. In order to accomplish this, the quantitative assessment of the overall probability of fuel vapour ignition is performed, along with all relevant data to support the probabilities determined for the purpose of this analysis.
Journal Article

Part Redesign: From Fastened Assembly to Co-Cured Concept

2013-09-17
2013-01-2329
During the course of an aircraft program, cost and weight savings are two major areas demanding constant improvements. An Integrated Product Development Team (IPDT) was set to the task of proposing potential improvements to an aircraft under development. From a list of potential parts, the IPDT selected one which was considered as the most suitable to leverage a co-curing process. In the aircraft manufacturing industry, any major modification to a part design should follow the program's means of compliance to certification. Furthermore, to demonstrate the new design's safety, sizing methodology and all supplementary testing must fit in the certification strategy. The IPDT approach was used to ensure the maturity of both process and part. Indeed, a mature turnkey solution can be implemented quickly on the shop floor. This IPDT approach is detailed in another SAE 2013 technical paper entitled: “A Novel Approach for Technology Development: A Success Story” [3].
Technical Paper

More About Lightning Induced Effects on Systems in a Composite Aircraft

2013-09-17
2013-01-2156
In order to guarantee systems immunity, lightning induced electromagnetic energy has to be lower than the system's susceptibility threshold. This can be achieved, if the aircraft structure provides a good protection against lightning current as well as against its electromagnetic induced field. Moreover such a structure is also required to constitute a ground plane that guarantees very low common mode impedance between all grounded systems in order to keep them at the same electrical potential. The interaction of lightning with aircraft structure, and the coupling of induced energy with harnesses and systems inside the airframe, is a complex phenomenon, mainly for composite aircraft. Composite structures are either not conductive at all (e.g., fiberglass) or are significantly less conductive than metals (e.g., carbon fiber).
Journal Article

Monitor Points Method for Loads Recovery in Static/Dynamic Aeroelasticity Analysis with Hybrid Airframe Representation

2013-09-17
2013-01-2142
With the high design/performance requirements in modern aircrafts, the need for a flexible airframe structural modeling strategy during the different phases of the airframe development process becomes a paramount. Hybrid structural modeling is a technique that is used for aircraft structural representation in which several Finite Element Modeling concepts are employed to model different parts of the airframe. Among others, the Direct Matrix Input at a Grid-Point (DMIG) approach has shown superiority in developing high fidelity, yet, simplified Finite Element Models (FEM's). While the deformation approach is a common choice for loads recovery in structures represented by stick models, using structural models simulated by the DMIG representation requires the adoption of a different approach for loads recovery applications, namely, the momentum approach.
Technical Paper

Managing Risk Reduction using a Relative Risk Prioritization Tool

2007-09-17
2007-01-3871
The Safety Management System (SMS) provides an environment where undesired events (proactively or reactively identified) are evaluated for the effect on safety using Risk Analysis. When the risk is evaluated, an interim risk reduction (mitigating action) may be applied to reduce the risk to a level that allows operations for a longer period before the safety issue is fully resolved. The risk assessment provides a means of evaluating the risk level and it may be difficult to quantify the “benefit” of interim mitigations that will reduce the risk. Prioritization of issues in the same risk category of the Risk Matrix is often simplified to a schedule and logistics basis of the final corrective action and often does not adequately show the benefit of the interim mitigating actions taken.
Technical Paper

Efficient 3D Artificial Ice Shapes Simulations with 2D Ice Accretion Codes using a 3-Level Correction

2013-09-17
2013-01-2136
3D ice accretion codes have been available for a few decades but, depending on the specific application, their use may be cumbersome, time consuming and requiring a great deal of expertise in using the code. In particular, simulations of large 3D glaze ice accretions using multiple layers of ice is a very challenging and time consuming task. There are several reasons why 2D icing simulations tools are still widely used in the aircraft industry to produce realistic glaze ice shapes. 2D codes are very fast and robust, with a very short turn-around time. They produce adequate results in areas of the aircraft where 3D effects on airflow or droplets concentration can be neglected. Their use can be extended to other areas of the aircraft if relevant 3D effects can be taken into account. This paper proposes a simulation methodology that includes three levels of corrections to extend the use of 2D icing codes to most of the aircraft surfaces.
Journal Article

Defining Environmental Indicators at Detail Design Stage as Part of an Ecodesign Strategy

2013-09-17
2013-01-2276
Implementing Design for Environment (DfE) into the design process requires a strategic integration. Furthermore, as DfE is continuously evolving, flexible processes need to be implemented. This article focuses on the integration of DfE into an optimization framework with the objective of influencing next-generation aircraft. For this purpose, DfE and Structures groups are developing together a set of new environmental indicators covering all life cycle stages of the product by coupling a list of yes/no questions with an environmental matrix. The following indicators are calculated: Regulation risk, Impact of manufacturing the part, CO2 emissions and Recyclability potential. These indicators will be used as constraints in the multi-disciplinary design optimization (MDO) framework, meaning that the structure will be designed while complying with environmental targets and anticipating future regulation changes.
Journal Article

Control Charts for Short Production Runs in Aerospace Manufacturing

2013-09-17
2013-01-2248
Statistical process control (SPC) has been extensively used in many different industries including automotive, electronics, and aerospace, among others. SPC tools such as control charts, process capability analysis, sampling inspection, etc., have definitive and powerful impact on quality control and improvement for mass production and similar production systems. In aerospace manufacturing, however, applications of SPC tools are more challenging, especially when these tools are implemented in processes producing products of large sizes with slower production rates. For instance, following a widely accepted rule-of-thumb, about 100 units of products are required in the first phase of implementing a Shewhart type control chart. Once established, it then can be used for process control in the second phase for actual production process monitoring and control.
Technical Paper

Considerations on the Use of Hydrophobic, Superhydrophobic or Icephobic Coatings as a Part of the Aircraft Ice Protection System

2013-09-17
2013-01-2108
Ice adhesion on critical aircraft surfaces is a serious potential hazard that runs the risk of causing accidents. For this reason aircraft are equipped with active ice protection systems (AIPS). AIPS increase fuel consumption and add complexity to the aircraft systems. Reducing energy consumption of the AIPS or replacing the AIPS by a Passive Ice Protection System (PIPS), could significantly reduce aircraft fuel consumption. New coatings with superhydrophobic properties have been developed to reduce water adherence to surfaces. Superhydrophobic coatings can also reduce ice adhesion on surfaces and are used as icephobic coatings. The question is whether superhydrophobic or icephobic coatings would be able to reduce the cost associated with AIPS.
Journal Article

Challenges Associated with a Complex Compound Curvature Passenger Doors

2013-09-17
2013-01-2217
This study investigates challenges associated with integrating a passenger (PAX) door on complex compound curvature (CCC) fuselages. Aerospace companies are investigating concepts that no-longer have constant cross-section (CS) fuselages. The PAX door is based on a generic semi-plug door for a long range business jet (BJ). This study investigates limitations of locating the door by varying the transition zone angle. A parametric CATIA tool, coupled with the use of finite element model (FEM) results can highlight key drivers in the design and location of PAX doors, creating a first-draft structural layout. The associated impact on the design and structural architecture for a fold down PAX door with integrated stairs is discussed. The impact of CCCs on the PAX door design is investigated with consideration to location, kinematics and function of the door.
Technical Paper

An Electrical Load Estimation Tool for Aircraft Conceptual Design

2013-09-17
2013-01-2206
During the development of an aircraft, a comprehensive understanding of the electrical load profile is essential to properly estimate the required electrical power to be generated and distributed by the electrical system, also known as EPGDS - Electrical Power Generation and Distribution System. By sizing the EPGDS early in the development process, system parameters like weight and volume can be estimated and applied to the multidisciplinary design optimization process, in search for optimized design solutions at the conceptual aircraft level when developing integrated aircraft systems. With this in mind, a methodology was developed to estimate the amount of electrical power required by the aircraft systems during a typical mission flight cycle.
Journal Article

Aircraft Structure Paint Thickness and Lightning Swept Stroke Damages

2013-09-17
2013-01-2135
During its flight an aircraft can be struck by lightning and the induced high current will require a highly conductive airframe skin structure in order for it to propagate through with minimum damage. However an aircraft skin is generally coated with paint and the airframer does not always have control on the paint thickness. Paint thickness generates heightened concerns for lightning strike on aircraft, mainly because most of coatings dedicated to that purpose are non-conductive. Using insulating material or non-conductive coating with certain thickness may contribute to or increase damage inflicted by the swept stroke lightning energy, even on metallic structures Due to its high relative permittivity, a non-conductive paint or coating on a fuselage skin surface will contribute to slow down the lightning current propagation through structure. With this comes the risk of increasing heat that will favor structural damage and possible melt through.
Technical Paper

Aircraft Safety Monitoring and Assessment Practices

2001-09-11
2001-01-2639
Aircraft systems are designed with reliability, safety and cost effectiveness in mind. The certification of the aircraft is based on tests and results of theoretical analyses that show the compliance with the FAR/JAR requirements. Monitoring for safety for in-service aircraft is an important, critical and extremely complex process. The ultimate objective is to assure that the safety level is equal to the original estimate or better. The manufacturer of the aircraft is particularly responsible for overall monitoring and assessment of all safety related events and corrective actions. Many different philosophies were adopted for this purpose. The safety monitoring and audit strategy is generally based on experience, engineering judgment, event analysis and numerical quantification by using probability theory and statistical tools. The aircraft sequential entry in the service and the aging of their components lead to the non-homogeneity of the fleet.
X