Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Optical Black Coating on Carbon Fiber Reinforced Composite Sandwich Structure with Aluminum Honeycomb Core for Satellites Applications

2022-05-26
2022-26-0029
The composite sandwich structure has been in use in space applications particularly for the satellite body because of its high strength to weight ratio coupled with excellent compressibility strength. In particular, there has been tremendous demand for honeycomb sandwich structures for satellite application in recent years. Currently, a major problem needs to be addressed concerning reflections from satellite structures which leads to capturing in-accurate data of celestial bodies by ground-based astronomy. In the light of the above, this paper focuses on the development of novel optical black coating on Carbon fiber reinforced composite sandwich structures with aluminum honeycomb core. A thin layer of Multi-Walled Carbon Nanotubes black coating was developed on the surfaces of Carbon fiber reinforced composite laminate of the sandwich structure using the Chemical Vapour Deposition technique, to provide a low reflective surface.
Technical Paper

Modelling and Simulation of Cooling of Heat Sink Using Alumina Nano Reinforced PCM

2024-03-05
2024-01-1913
An escalating demand for improved heat dissipation from electronic components is driven by the imperative need to eliminate the accumulated heat that gradually builds up over time. In this study, a 3-D simulation was carried out to analyze the heat distribution performance of a heat sink based on PCM/NePCM. The heat sink was subjected to varying heat fluxes ranging from 3-7 kW/m2, and its performance was evaluated over time. The findings of the computational research indicate that using PCM assists in maintaining the heat sink base's temperature within lower bounds, and leads to uniform melting within the heat sink. Further, inclusion of Alumina nano particles integration in PCM enhanced the performance of heat sink. The percentage reduction in charging time of NePCM without fins (φ = 1%, 2.5% and 5%) in comparison to the Pure-PCM (φ = 0%) is 6%, 11% and 51% respectively at 6 kW/m2 input.
Technical Paper

Investigation of Mechanical Properties and Weld nugget Characteristics of Thermoplastics by Using Friction Stir Welding with Heat Assisted Induction Coil

2024-03-05
2024-01-1943
Friction stir welding (FSW) is a method of welding that creates a weld trail by pressing a non-consumable rotating tool with a profiled pin on the adjacent surfaces while moving transversely along the welding direction. The method was initially used with metals and alloys, but more recently, thermoplastic polymers have also been included in its application. Investigations on FSW of thermoplastic polymers made of nylon and High-density polythene (HDPE) are presented here. Weld characteristics that are like those of the base materials are attempted to be achieved. Because of their unique nature and thermal conductivity, thermoplastics FSW differs from that of metals. The use of thermoplastic materials with conventional FSW procedures presents numerous difficulties and is currently ineffective. On the weld characteristics of nylon and HDPE, statistical methods were utilized to study the impact of temperature, rotational speed, and transverse speed.
Technical Paper

AZ31-MWCNT Composites Fabricated Through Powder Metallurgy for Aerospace Applications

2024-03-05
2024-01-1938
The aerospace industry's unceasing quest for lightweight materials with exceptional mechanical properties has led to groundbreaking advancements in material technology. Historically, aluminum alloys and their composites have held the throne in aerospace applications owing to their remarkable strength-to-weight ratio. However, recent developments have catapulted magnesium and its alloys into the spotlight. Magnesium possesses two-thirds of aluminum's density, making it a tantalizing option for applications with regard to weight-sensitive aerospace components. To further enhance magnesium's mechanical properties, researchers have delved into the realm of metal matrix composites (MMCs), using reinforcements such as Alumina, Silicon carbide, Boron carbide and Titanium carbide.
X