Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Smoke Eater, A Sorbent/Catalyst for Recovery from Fires

2008-06-29
2008-01-2098
The possibility and consequences of a fire on board a spacecraft and the subsequent effects of the resultant toxic gases and smoke on the crew, equipment and mission is an ever-present hazard for the National Aeronautics and Space Administration (NASA). The necessity to remove these contaminants in the presence of high levels of humidity and carbon dioxide has prompted the development of a new prototype atmospheric filter (smoke eater) that can scrub acid gases, basic gases, and carbon monoxide from a spacecraft atmosphere in a post-fire event to a concentration below one half the Spacecraft Maximum Allowable Concentration (SMAC) levels. TDA Research, Inc. (TDA) is developing an advanced smoke eater to remove combustion byproducts. The material makeup of the smoke eater will also be applicable to spacecraft evacuation masks and the shipboard atmospheric revitalization system.
Technical Paper

System for the Removal of NOX and SO2 from Incinerator Effluents, Part 1

1999-07-12
1999-01-2184
Incineration is a promising method for converting biomass and human waste into CO2 and H2O during extended planetary exploration. During incineration, small amounts NOX and SO2 are produced and must be removed. TDA has developed a NOX control process that is safe and effective and does not require addition of NH3, which is commonly used in selective catalytic reduction of NOx. In our process, NO is catalytically oxidized to NO2 which is then removed by wet scrubbing with a weak base to form an innocuous water solution of nitrates and nitrites. We plan to integrate our catalytic NO oxidation process into a complete gas cleaning system that will remove NOX, SO2, particulate material, CO and unburned organic compounds.
Technical Paper

Process Upsets Involving Trace Contaminant Control Systems

2000-07-10
2000-01-2429
Paradoxically, trace contaminant control systems that suffer unexpected upsets and malfunctions can release hazardous gaseous contaminants into a spacecraft cabin atmosphere causing potentially serious toxicological problems. Trace contaminant control systems designed for spaceflight typically employ a combination of adsorption beds and catalytic oxidation reactors to remove organic and inorganic trace contaminants from the cabin atmosphere. Interestingly, the same design features and attributes which make these systems so effective for purifying a spacecraft’s atmosphere can also make them susceptible to system upsets. Cabin conditions can be contributing causes of phenomena such as adsorbent “rollover” and catalyst poisoning can alter a system’s performance and in some instances release contamination into the cabin. Evidence of these phenomena has been observed both in flight and during ground-based tests.
Technical Paper

Freeze Tolerant Radiator for Advanced EMU

2004-07-19
2004-01-2263
The current Extravehicular Mobility Unit (EMU) system provides thermal control using a sublimator to reject both the heat produced by the astronaut's metabolic activity as well as the heat produced by the Portable Life Support Unit (PLSS). This sublimator vents up to eight pounds of water each Extravehicular Activity (EVA). If this load could be radiated to space, the amount of water that would need to be sublimated could be greatly reduced. There is enough surface area on the EMU that almost all of the heat can be rejected by radiation. Radiators, however, reject heat at a relatively constant rate, while the astronaut generates heat at a variable rate. To accommodate this variable heat load, NASA is developing a new freeze tolerant radiator where the tubes can selectively freeze to “turn down” the radiator and adjust to the heat rejection requirement. This radiator design significantly reduces the amount of expendable water needed for the sublimator.
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Journal Article

Development and Design of a Low Temperature Solid Waste Oxidation and Water Recovery System

2008-06-29
2008-01-2052
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. Previously, TDA Research, Inc. demonstrated the potential of a low temperature dry oxidation process using ozone in a small laboratory reactor.
Technical Paper

An Investigation of International Space Station Trace Contaminant Oxidation Catalyst Poisoning

1996-07-01
961517
The Trace Contaminant Control System (TCCS) removes most hazardous contaminants from the space station atmosphere using a carbon bed, but some must be destroyed in a high temperature catalytic oxidizer. While the oxidizer is protected from catalyst poisons by the carbon bed, if contaminant loads are greater than anticipated, the catalyst may be exposed to a variety of poisons. Thus, we studied the effect of halocarbons, sulfides and nitrogen compounds on the catalytic activity and the products produced. We found that even if poisoning occurs, the catalyst will recover, and will not produce toxic partial oxidation products.
X