Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Wireless Sensing - Future's Password to Digital Avionics System

2014-09-16
2014-01-2132
Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
Technical Paper

Wavelet-based Fouling Diagnosis of the Heat Exchanger in the Aircraft Environmental Control System

2015-09-15
2015-01-2582
The Environmental Control System (ECS) of an aircraft provides thermal and pressure control of the engine bleed air for comfort of the crew members and passengers onboard. For safe and reliable operation of the ECS under complex operating environments, it is critical to detect and diagnose performance degradations in the system during early phases of fault evolution. One of the critical components of the ECS is the heat exchanger, which ensures proper cooling of the engine bleed air. This paper presents a wavelet-based fouling diagnosis approach for the heat exchanger.
Technical Paper

Techniques for Safety Analysis and Design Decisions with Limited Data

2016-09-20
2016-01-2040
Most of the real world problems pose practical challenges for making decisions primarily due to availability of limited data. Quantification of risk and assessment of structural reliability becomes difficult in such scenarios. Techniques for performing safety analysis for such problems are discussed in this paper. While complete characterization of a system behavior may be difficult with limited data of its response, statistical models based on extreme value theory provide the basis for making decisions with reasonable confidence. The same may not be true, however, for such structures early in their design cycle due to limited experience of their performance. In such cases response surface methodology can be very useful in determination of risk and suitably making modifications to the design to improve the reliability of the component or system. Applications of these methods for some real world scenarios are demonstrated.
Technical Paper

Heat Exchanger Fouling Diagnosis for an Aircraft Air-Conditioning System

2013-09-17
2013-01-2250
This paper addresses the issue of fault diagnosis in the heat exchanger of an aircraft Air Conditioning System (ACS). The heat exchanger cools the air by transferring the heat to the ram-air. Due to a variety of biological, mechanical and chemical reasons, the heat exchanger may experience fouling conditions that reduces the efficiency and could considerably affect the functionality of the ACS. Since, the access to the heat exchanger is limited and time consuming, it is preferable to implement an early fault diagnosis technique that would facilitate Condition Based Maintenance (CBM). The main contribution of the paper is pre-flight fault assessment of the heat exchanger using a combined model-based and data-driven approach of fault diagnosis. A Simulink model of the ACS, that has been designed and validated by an industry partner, has been used for generation of sensor data for various fouling conditions.
Technical Paper

Evaluation of Key Certification Aspects of Multi Core Platforms for Safety Critical Applications in Avionics Industry

2015-09-15
2015-01-2524
Multi core platforms offer high performance at low power and have been deemed as future of size, weight and power constrained applications like avionics safety critical applications. Multi core platforms are widely used in non-real time systems where the average case performance is desired like in consumer electronics, telecom domains. Despite these advantages, multi core platforms (hardware and software) pose significant certification challenges for safety critical applications and hence there has been limited usage in avionics and other safety critical applications. Many multicore platform solutions which can be certified to DO-254 & DO 178B Level A are commercially available. There is a need to evaluate these platforms w.r.t certification requirements before deploying them in the safety critical systems thereby reducing the program risks. This paper discusses the advantages of multi core platforms in terms of performance, power consumption and weight/size.
Technical Paper

Embedded COTS - A Gateway for New Processors/High Performing Machines to Digital Avionics System Industry

2014-09-16
2014-01-2206
Today's digital avionics systems leverage the use of the Embedded COTS (Commercial Off The Shelf) hardware to fit the need of small form factor, low power, reduced time to market and reduced development time with efficient use of DO-254 for compliance of product. COTS modules are entering in digital avionics systems such as COM (Computer On Module)/SOM (System On Module)/SIP (System In Package) with huge advancement in semiconductor and packaging industry. In today's scenario COTS are very useful for DAL (Development Assurance Level) C and below as the efforts on compliance for DAL A and B are huge. This paper proposes to use these for DAL A and B as well, where one can get enormous benefit on efforts of compliance and time to market. This paper makes an attempt to explain the current scenario of the Embedded COTS usage in Avionics Systems.
Technical Paper

Electromagnetic Compatibility and Interference - Design Methodology, Challenges and Guidelines for Avionics Product and Systems

2017-09-19
2017-01-2118
Avionics industry is moving towards more electric & lightweight aircrafts. Electromagnetic effects becomes significantly challenging as materials starts moving towards composite type. Traditional methods for controlling EMC will not be sufficient. This shift increases the complexity of in-flight hardware elements for EMI/EMC control. This paper discusses the need for EMI/EMC Control and brings out the analysis & applicability of various EMI/EMC standards in aerospace, commercial and industrial electronic products, provides comparative study with respect to levels. The study include various sections of DO-160 and applicable guidelines for controlling EMI/EMC with respect to LRU (Line Replaceable Unit) & wire/cable harnesses. Also presents guidelines with respect to shielding of components, selection of components, grounding schemes, filter topologies and layout considerations.
Technical Paper

DO-254/ED-80 - An Application Guidelines to Redesign/Re-Engineering Airborne Electronic Hardware

2016-09-20
2016-01-2039
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
Technical Paper

A Methodology for Formal Requirements Validation and Automatic Test Generation and Application to Aerospace Systems

2018-10-30
2018-01-1948
Automation on Validation and Verification (V&V) leveraging Formal Methods, and in particular Model Checking, is seeing an increasing use in the Aerospace domain. In recent years, Formal Methods have been used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. In a previous paper a compositional methodology for the verification of Aerospace Systems has been described with application to Electrical Power Generation and Distribution Systems. In this paper we present an expansion of the previous work in two directions. First, we describe the application of the methodology to the validation of Proximity Sensing Systems (PSS) requirements showing the effectiveness of the method to a new aerospace domain.
Technical Paper

A Method of Reporting and Prioritizing Faults for Aircraft Downtime Reduction

2017-09-19
2017-01-2125
The exponential increase in the number of aircrafts and air travelers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
Technical Paper

A Lightweight Spatio-Temporally Partitioned Multicore Architecture for Concurrent Execution of Safety Critical Workloads

2016-09-20
2016-01-2067
Modern aircraft systems employ numerous processors to achieve system functionality. In particular, engine controls and power distribution subsystems rely heavily on software to provide safety-critical functionality, and are expected to move toward multicore architectures. The computing hardware-layer of avionic systems must be able to execute many concurrent workloads under tight deterministic execution guarantees to meet the safety standards. Single-chip multicores are attractive for safety-critical embedded systems due to their lightweight form factor. However, multicores aggressively share hardware resources, leading to interference that in turn creates non-deterministic execution for multiple concurrent workloads. We propose an approach to remove on-chip interference via a set of methods to spatio-temporally partition shared multicore resources.
X