Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Post Oxidation Study During Secondary Exhaust Air Injection for Fast Catalyst Light-Off

2009-11-02
2009-01-2706
To comply with ever more stringent emission limits, engineers are studying and optimising gasoline engine start-up and warm-up phases. Secondary air injection (SAI) represents one option to reduce emissions by post-oxidizing products of a rich combustion like HC, CO and H2. With this approach, the faster catalytic converter light-off allowed by the increase in exhaust temperature leads to a significant HC emissions reduction. All the mechanisms involved in post oxidation downstream of the exhaust valve are not well-known. In order to achieve substantial improvements, various SAI strategies were studied with a conventional PFI gasoline engine. Tests have been carried out both on steady-state running conditions and on transient warm-up phases at engine test bench. Various specific experimental devices and methodologies were developed. For example, the use of fast HC and temperature measurements is coupled with exhaust gas flow rate modeled with system simulation.
Technical Paper

Persistent Particle Number Emissions Sources at the Tailpipe of Combustion Engines

2016-10-17
2016-01-2283
The more and more stringent regulations on particle emissions at the vehicle tailpipe have led the car manufacturers to adopt suitable emissions control systems, like particulate filters with average filtration efficiency that can exceed 99%, including particulate mass (PM) and number (PN). However, there are still some specific operating conditions that could exhibit noticeable particle number emissions. This paper aims to identify and characterize these persistent sources of PN emissions, based on tests carried out both at the engine test bench and at the chassis dynamometer, and both for Diesel and Gasoline direct injection engines and vehicles. For Diesel engines, highest particle numbers were observed downstream of the catalyzed DPF during some operation conditions like engine warm up or filter regeneration phases. PN could be 50 times higher during the warm up phase and can reach as much as 2000 to 3000 times more during the regeneration phase compared to normal operation.
Technical Paper

Performance Improvement of Diesel Particulate Filter by Layer Coating

2012-04-16
2012-01-0842
Nowadays diesel particulate filters (DPFs) with catalyst coatings have assumed one of the most significant roles for road vehicle emission control. DPFs made of re-crystallized SiC (SiC-DPFs) have guaranteed the soot filtration efficiency for the current regulation. In order to further enhance their filtration efficiency, even though a higher porosity and larger pore size must be adopted for sufficient catalyst coating capacity, we developed the concept of a filtration layer on the DPF inlet channel walls and researched its performance both theoretically and experimentally. First of all, models of the new filtration layer, closely resembling the real one made in the laboratory, were digitally reconstructed and soot deposition simulations were conducted.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Technical Paper

New Asymmetric Plugging Layout of Diesel Particulate Filters for the Pressure Drop Reduction

2014-04-01
2014-01-1512
Diesel particulate filters (DPFs) equipped with diesel vehicles have become indispensable components to capture the soot emitted from the engines from a viewpoint of both human health and global warming problems as well as the prevailing regulations. Meanwhile, the pressure drop caused by them leads to a direct increase of fuel consumption. In order to reduce it guaranteeing the sufficient soot filtration efficiency, we have developed the new concept of asymmetric plugging layout for the DPF design, so-called Valuable Plugging Layout (VPL), on the basis of octosquare (OS) structure and have clarified the advantage of the pressure drop reduction both experimentally and theoretically. The VPL-DPF consists of two kinds of octagonal/square inlet channels and octagonal outlet channels, and there are thought to be five filtration velocity modes as well as four kinds of soot deposit layers on each side of the inlet channel walls.
Technical Paper

Further Experimental Study of Asymmetric Plugging Layout on DPFs: Effect of Wall Thickness on Pressure Drop and Soot Oxidation

2015-04-14
2015-01-1016
In order to guide the development of asymmetric plugging layout Diesel Particulate Filters, hereafter referred to as “VPL-DPF”, in this paper we present some evaluation results regarding the effect of design parameters on the VPL-DPF performance. VPL-DPF samples which have different wall thicknesses (thin and thick walls) were evaluated in regards to their pressure drop and soot oxidation behaviors, with the aim to optimize the design of DPF structure. As a result of pressure drop evolution during soot loading, contrary to our expectation, in some cases, it was found out that VPL increases the transient pressure drop compared to the conventional plugging layout DPF. That meant there is an appropriate specific optimum wall thickness for adoption of VPL which has to be well defined at its structural design phase. Based on our previous research, it is expected that this result is due to interactions among the different (five) wall flows that exist in a VPL-DPF.
Technical Paper

Emission Reduction Technologies for the Future Low Emission Rail Diesel Engines: EGR vs SCR

2013-09-08
2013-24-0087
The EU emission standards for new rail Diesel engines are becoming even more stringent. EGR and SCR technologies can both be used to reduce NOx emissions; however, the use of EGR is usually accompanied by an increase in PM emissions and may require a DPF. On the other hand, the use of SCR requires on-board storage of urea. Thus, it is necessary to study these trade-offs in order to understand how these technologies can best be used in rail applications to meet new emission standards. The present study assesses the application of these technologies in Diesel railcars on a quantitative basis using one and three dimensional numerical simulation tools. In particular, the study considers a 560 kW railcar engine with the use of either EGR or SCR based solutions for NOx reduction. The NOx and PM emissions performances are evaluated over the C1 homologation cycle.
Technical Paper

Durability of Filtration Layers Integrated into Diesel Particulate Filters

2013-04-08
2013-01-0837
This paper describes the durability of the filtration layer integrated into Diesel Particulate Filters (DPFs) that we have developed to ensure low pressure loss and high filtration efficiency performances which also meet emission regulations. DPF samples were evaluated in regards to their performance deterioration which is brought about by ash loading and uncontrolled regeneration cycles, respectively. Ash was synthesized by using a diesel fuel/lubrication oil mixture and was trapped up to a level which corresponded to a 240,000km run, into the DPFs both with and without the filtration layer. Afterwards, aged-DPFs were measured with respect to their permeability, pressure loss, filtration efficiency, as well as soot oxidation speed using suitable analytical methods. Consequently, it has been confirmed that there was no noteworthy deterioration of the performances in the DPF with the filtration layer.
Technical Paper

CO2 Emissions Reduction through a New Multi-Functional Fluid for Simultaneous NOx and Particles Abatement

2020-09-15
2020-01-2170
Since the Euro VI/6 regulation came into force in 2013/2014, most of the Diesel applications are equipped with both selective catalytic reduction (SCR) systems and Diesel particulate filters (DPF). On the one hand, SCR requires ammonia for the reduction of nitrogen oxides (NOx) created during the combustion process. An aqueous urea solution (AUS) containing 32.5% wt. urea, such as AdBlue® is injected into the hot exhaust gas upstream of the SCR catalyst to produce ammonia for NOx reduction. On the other hand, DPF demonstrates very high particle filtration efficiency, but requires to be periodically regenerated at high temperature to burn off accumulated soot. The regeneration temperature and duration can be significantly lowered by using fuel additives (fuel-borne catalyst or FBC) or by washcoating a catalyst into the DPF (catalyzed DPF or cDPF).
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
X