Refine Your Search

Topic

Author

Search Results

Technical Paper

Wavelet Analysis of In-Cylinder LDV Measurements and Correlation Against Heat-Release

1998-02-23
980483
Wavelet analysis was used to calculate turbulence and mean velocity levels for LDV measurements made in a four valve spark ignition engine. Five different camshafts were tested, and they produce significantly different flow behaviour. The standard cam gives tumble and with valve deactivation, swirl is produced. One camshaft with early inlet valve closing and two camshafts with late inlet valve closing were also tested. The wavelet toolbox for Matlab version 5.1 has been used for the wavelet calculations. The wavelet technique produces both time resolved and frequency resolved velocity information. The results indicate some influence of the turbulence frequency content on the rate of heat release. Correlation against heat-release can be seen for different scales of turbulence. The breakdown of the tumble (low frequency turbulence) into high frequency turbulence can be seen clearly.
Technical Paper

The Influence of Different Frequencies in the Turbulence on Early Flame Development in a Spark Ignition Engine

1994-03-01
940990
Two-components cycle-resolved Laser Doppler Velocimetry (LDV) measurements were performed with high data rate to resolve the flow in a spark ignition engine. The velocity measurements were then processed with both a frequency and a time domain filtering technique to obtain the level of turbulence at different frequencies. Simultaneous cylinder pressure measurements gave information of the duration of the early flame development through a heat release calculation. The initial combustion rate was correlated to the turbulence at different frequencies and the results showed a higher correlation for the high frequencies (4-6 kHz) when the engine was run at 700 rpm.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap

2004-03-08
2004-01-0944
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. This implementation requires only minor modifications of the standard SI engine and allows SI operation outside the operating range of HCCI. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. A heat exchanger is utilized to heat or cool the intake air, not as a means of combustion control but in order to simulate realistic variations in ambient temperature. The combustion is monitored in real time using cylinder pressure sensors. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. However, for a practical application the intake temperature will vary both geographically and from time to time.
Technical Paper

The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine Performance

2006-04-03
2006-01-0205
The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the auto ignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition

1998-02-23
980787
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the reciprocating engine. Here, a homogeneous charge is used as in a spark ignited engine, but the charge is compressed to auto-ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine, HCCI has a homogeneous charge and hence no problems associated with soot and NOX formation. Earlier research on HCCI showed high efficiency and very low amounts of NOX, but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP values with HCCI, the limit being 5 bar. Supercharging is one way to dramatically increase IMEP. The influence of supercharging on HCCI was therefore experimentally investigated. Three different fuels were used during the experiments: iso-octane, ethanol and natural gas.
Journal Article

Study on the Pre-Chamber Fueling Ratio Effect on the Main Chamber Combustion Using Simultaneous PLIF and OH* Chemiluminescence Imaging

2020-09-15
2020-01-2024
Pre-chamber combustion (PCC) enables leaner air-fuel ratio operation by improving its ignitability and extending flammability limit, and consequently, offers better thermal efficiency than conventional spark ignition operation. The geometry and fuel concentration of the pre-chamber (PC) is one of the major parameters that affect overall performance. To understand the dynamics of the PCC in practical engine conditions, this study focused on (i) correlation of the events in the main chamber (MC) with the measured in-cylinder pressure traces and, (ii) the effect of fuel concentration on the MC combustion characteristics using laser diagnostics. We performed simultaneous acetone planar laser-induced fluorescence (PLIF) from the side, and OH* chemiluminescence imaging from the bottom in a heavy-duty optical engine. Two different PC Fueling Ratios (PCFR, the ratio of PC fuel to the total fuel), 7%, and 13%, were investigated.
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

2014-04-01
2014-01-1330
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

Simulation of HCCI – Addressing Compression Ratio and Turbo Charging

2002-10-21
2002-01-2862
This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero dimensional modeling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO-formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum λ-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency.
Technical Paper

Scavenging Flow Velocity in Small Two-Strokes at High Engine Speed

1995-09-01
951789
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities (-275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the whole scavenging phase, higher than the vertical.
Technical Paper

Reed Valve Evaluation and Selection for the Compressor Cylinder in Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0397
This paper shows the potential benefits of implementing four configurations of reed valves at the inlet of the two-stroke compressor used in the double compression expansion engine (DCEE) concept or 8-stroke engines over the conventional poppet valves used in 4-stroke internal combustion engines. To model the reed and poppet valve configurations, the discharge coefficient was estimated from RANS computational fluid dynamics simulations using ANSYS Fluent 2020 R1, with a pressure difference up to 0.099 bar. The calculated discharge coefficients for each case were then fed in a zero-one dimension model using GT-Power to understand the valve performance i.e. the volumetric efficiency of the compressor cylinder and the mean indicated pressure during the compression process at 1200 rpm.
Technical Paper

Pressure Sensitivity of HCCI Auto-Ignition Temperature for Gasoline Surrogate Fuels

2013-04-08
2013-01-1669
An index to relate fuel properties to HCCI auto-ignition would be valuable to predict the performance of fuels in HCCI engines from their properties and composition. The indices for SI engines, the Research Octane Number (RON) and Motor Octane Number (MON) are known to be insufficient to explain the behavior of oxygenated fuels in an HCCI engine. One way to characterize a fuel is to use the Auto-Ignition Temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of Low Temperature Heat Release (LTHR) that is closely connected to the ignition properties of the fuel. A systematic study of fuels consisting of gasoline surrogate components of n-heptane, iso-octane, toluene, and ethanol was made. 21 fuels were prepared with RON values ranging from 67 to 97.
Technical Paper

Pressure Oscillations During Rapid HCCI Combustion

2003-10-27
2003-01-3217
This work has focused on studying the in-cylinder pressure fluctuations caused by rapid HCCI combustion and determine what they consist of. Inhomogeneous autoignition sets up pressure waves traversing the combustion chamber. These pressure waves induce high gas velocities which causes increased heat transfer to the walls or in worst case engine damage. In order to study the pressure fluctuations a number of pressure transducers were mounted in the combustion chamber. The multi transducer arrangement was such that six transducers were placed circumferentially, one placed near the centre and one at a slight offset in the combustion chamber. The fitting of six transducers circumferentially was enabled by a spacer design and the two top mounted transducers were fitted in a modified cylinder head. During testing a disc shaped combustion chamber was used. The results of the tests conducted were that the in-cylinder pressure experienced during rapid HCCI-combustion is inhomogeneous.
Technical Paper

Particle Image Velocimetry Flow Measurements and Heat-Release Analysis in a Cross-Flow Cylinder Head

2002-10-21
2002-01-2840
A specially designed cylinder head, enabling unthrottled operation with a standard cam-phasing mechanism, was tested in an optical single-cylinder engine. The in-cylinder flow was measured with particle image velocimetry (PIV) and the results were compared with heat release and emission measurements. The article also discusses effects of residual gas and effective compression ratio on heat-release and emissions. The special design of the cylinder head, with one inlet and one exhaust valve per camshaft, made it possible to operate the engine unthrottled at part load. Cam phasing led to late inlet valve closing, but also to increased valve overlap. The exhaust valve closing was late in the intake stroke, resulting in high amounts of residual gases. Two different camshafts were used with late inlet valve closing. One of the camshafts had shorter valve open duration on the phased exhaust cam lobe.
Technical Paper

Optical Diagnostics of Pre-Chamber Combustion with Flat and Bowl-In Piston Combustion Chamber

2021-04-06
2021-01-0528
Pre-chamber Combustion (PCC) extends the lean operation limit operation of spark ignition (SI) engines, thus it has been of interest for researchers as a pathway for increased efficiency and reduced emissions. Optical diagnostic techniques are essential to understand the combustion process, but the engine components such as the piston geometry, are often different from real engines to maximize the optical access. In this study, ignition and subsequent main chamber combustion are compared in an optically accessible PCC engine equipped with a “flat” and a real engine-like “bowl” piston geometry. An active fueled narrow throat pre-chamber was used as the ignition source of the charge in the main-chamber, and both chambers were fueled with methane. Three pre-chamber fuel effective mean pressure (FuelMEP) ratios (PCFR) namely 6%, 9% and 11% of the total amount of fuel were tested at two global excess air ratios (λ) at values of 1.8 and 2.0.
Technical Paper

Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

2018-04-03
2018-01-0896
Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NOX) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at −180 CAD (aTDC) and −30 CAD (aTDC), respectively.
Technical Paper

Load Control Using Late Intake Valve Closing in a Cross Flow Cylinder Head

2001-09-24
2001-01-3554
A newly developed cross flow cylinder head has been used for comparison between throttled and unthrottled operation using late intake valve closing. Pressure measurements have been used for calculations of indicated load and heat-release. Emission measurements has also been made. A model was used for estimating the amount of residual gases resulting from the different load strategies. Unthrottled operation using late intake valve closing resulted in lower pumping losses, but also in increased amounts of residual gases, using this cylinder head. This is due to the special design, with one intake valve and one exhaust valve per camshaft. Late intake valve closing was achieved by phasing one of the camshafts, resulting in late exhaust valve closing as well. With very late phasing - i.e. low load - the effective compression ratio was reduced. This, in combination with high amount of residual gases, resulted in a very unstable combustion.
Technical Paper

Lean Burn Versus Stoichiometric Operation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas

2007-01-23
2007-01-0015
Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn approach may not be sufficient for future emissions legislation. One way to improve the lean burn strategy is to add hydrogen to the fuel to increase the lean limit and thus reduce the NOx formation without increasing the emissions of HC. Even so, the best commercially available technology for low emissions of NOx, HC and CO today is stoichiometric operation with a three-way catalyst as used in passenger cars.
X