Refine Your Search

Topic

Search Results

Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2007-11-15
HISTORICAL
ARP4755A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2023-05-19
CURRENT
ARP4755C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2013-12-19
HISTORICAL
ARP4755B
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2023-05-01
CURRENT
ARP741D
This SAE Aerospace Recommended Practice (ARP) describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEM’s contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2016-08-12
HISTORICAL
ARP741C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

1999-05-01
HISTORICAL
ARP741A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2008-11-05
HISTORICAL
ARP741B
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions.
Standard

Turbine Flowmeter Fuel Flow Calculations

2013-10-04
HISTORICAL
ARP4990A
This SAE Aerospace Recommended Practice (ARP) provides to the aerospace industry a procedure for the consistent and accurate calculation of fuel flow using turbine flowmeters during development, production, and post overhaul/repair gas turbine engine testing.
Standard

Turbine Flowmeter Fuel Flow Calculations

2020-10-22
CURRENT
ARP4990B
This SAE Aerospace Recommended Practice (ARP) provides to the aerospace industry a procedure for the consistent and accurate calculation of fuel flow using turbine flowmeters during development, production, and post overhaul/repair gas turbine engine testing.
Standard

Trend Analysis for Maintaining Correlation of Gas Turbine Engine Test Cells

2011-03-10
HISTORICAL
ARP5758
This document describes a recommended practice and procedure for the trending of parameters to maintain the test cell correlation status. Trending is performed to monitor test cells for changes that can affect engine performance or the data acquired from engine tests.
Standard

TURBINE FLOWMETER FUEL FLOW CALCULATIONS

2007-11-15
HISTORICAL
ARP4990
This SAE Aerospace Recommended Practice (ARP) provides to the aerospace industry a procedure for the consistent and accurate calculation of fuel flow using turbine flowmeters during development, production, and post overhaul/repair gas turbine engine testing.
Standard

Numerical Modeling Techniques for Jet Engine Test Cell Aerodynamics

2019-03-21
CURRENT
AIR6355
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines, and particularly for those who might be interested in investigating steady-state performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of numerical modeling and simulation. It is not the intent of this standard to provide specific test cell design recommendations, which are covered in the reference documentation.
Standard

Inlet Airflow Ramps for Gas Turbine Engine Test Cells

2007-11-15
HISTORICAL
AIR5306
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of gas turbine engines and particularly for those who might be interested in upgrading their existing engine test facility to meet the airflow requirements for higher thrust engine models. The intellectual property rights on the material contained in this document are protected by US Patent Number 5,293,775 dated March 15, 1994 assigned to United Technologies Corporation, Hartford, Connecticut, USA. Any individual, or organization, attempting to use the system described in this document should get a clearance from United Technologies Corporation, to avoid any potential liability arising from patent infringement.
Standard

Infrasound Phenomenon in Engine Test Cells

2018-01-04
CURRENT
AIR5303
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground level testing of large turbofan and turbojet engines, and particularly those who are interested in infrasound phenomena.
X