Refine Your Search

Topic

Search Results

Technical Paper

Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency

1989-02-01
890405
The present study investigates the pressure drop and filtration characteristics of wall-flow diesel particulate monoliths, with the aid of a mathematical model. An analytic solution to the model equations describing exhaust gas mass and momentum conservation, in the axial direction of a monolith cell, and pressure drop across its porous walls has been obtained. The solution is in very good agreement with available experimental data on the pressure drop of a typical wall-flow monolith. The capture of diesel particles by the monolith, is described applying the theory of filtration through a bed of spherical collectors. This simple model, is in remarkable agreement with the experimental data, collected during the present and previous studies, for the accumulation mode particles (larger than 0.1 μm).
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Variability in Particle Emission Measurements in the Heavy Duty Transient Test

1991-02-01
910738
A study of the sources of variability in particulate measurements using the Heavy-Duty Transient Test (40 CFR Subpart N) has been conducted. It consisted of several phases: a critical examination of the test procedures, visits to representative facilities to compare and contrast facility designs and test procedures, and development of a simplified model of the systems and procedures used for the Heavy-Duty Transient Test. Some of the sources of variability include; thermophoretic deposition of particulate matter onto walls of the sampling system followed by subsequent reentrainment in an unpredictable manner, the influence of dilution and cooling upon the soluble organic fraction, inconsistency among laboratories in the engine and dynamometer control strategies, and errors in measurements of flows into and out of the secondary dilution tunnel.
Technical Paper

Unsteady Vaporization Histories and Trajectories of Fuel Drops Injected into Swirling Air

1962-01-01
620271
Single droplet theory is used to simulate the behavior of fuel sprays in high-speed open-chamber diesels. A model for sprays in still air is presented which includes the air motion induced by the spray. Calculated paths and vaporization histories for droplets injected into swirling air are also presented. It is shown that the paths of vaporizing drops are closely approximated by solid sphere calculations. The effects of swirl speed, engine rpm, and squish air motion are also investigated.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 1 - Model Development

1999-03-01
1999-01-0240
The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of the cooling system of an on-highway heavy duty diesel powered truck under steady and transient operation. This code includes an engine cycle analysis program along with various components for the four main fluid circuits for cooling air, cooling water, cooling oil, and intake air, all evaluated simultaneously. The code predicts the operation of the response of the cooling circuit, oil circuit, and the engine compartment air flow when the VECSS is operated using driving cycle data of vehicle speed, engine speed, and fuel flow rate for a given ambient temperature, pressure and relative humidity.
Technical Paper

The Use of the Vehicle Engine Cooling System Simulation as a Cooling System Diesel Tool

1988-02-01
880600
Enhanced VECSS simulation program was tested for use as a cooling system design tool. The design parameters indicated in the study were varying fan type, fan speed, engine power rating, radiator style and air conditioning condenser. The predicted temperature results were compared to the experimental data, and were found to follow the measured trends, and in cases when the exact parameters were simulated, were found to match the temperature amplitudes.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

1991-02-01
910644
A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

The Study of the Effect of Exhaust Gas Recirculation on Engine Wear in a Heavy-Duty Diesel Engine Using Analytical Ferrography

1986-03-01
860378
A study was undertaken to investigate the affect of exhaust gas recirculation (EGR) on engine wear and lubricating oil degradation in a heavy duty diesel engine using a newly developed methodology that uses analytical ferrography in conjunction with short term tests. Laboratory engine testing was carried out on a Cummins NTC-300 Big Cam II diesel engine at rated speed (1800 RPM) and 75% rated load with EGR rates of 0, 5, and 15% using a SAE 15W40 CD/SF/EO-K oil. Dynamometer engine testing involved collecting oil samples from the engine sump at specified time intervals through each engine test. These oil samples were analyzed using a number of different oil analysis techniques that provide information on the metal wear debris and also on the lubricating oil properties. The results from these oil analysis techniques are the basis of determining the effect of EGR on engine wear and lubricating oil degradation, rather than an actual engine tear down between engine tests.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

2009-04-20
2009-01-1274
Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

The Effects of Ambient Temperature and Vehicle Load on a Diesel Powered Truck Cooling System Performance Using a Computer Simulation Program

1984-11-01
841710
A computer simulation model to predict the thermal responses of an on-highway heavy duty diesel truck in transient operation was used to study several important cooling system design and operating variables. The truck used in this study was an International Harvester COF-9670 cab-over-chassis vehicle equipped with a McCord radiator, Cummins NTC-350 diesel engine, Kysor fan-clutch and shutter system, aftercooler, and standard cab heater and cooling system components. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the computer simulation model. The thermostat-fan, thermostat-shutter-fan, and thermostat-winterfront-fan systems were studied.
Technical Paper

The Effect of Truck Dieselization on Fuel Usage

1981-02-01
810022
The effect of truck dieselization for three levels of diesel penetration into each of the eight classes of trucks is modeled. Diesel and total truck sales, population, mileage and yearly fuel usage data are aggregated by four truck classes representing light, medium, light-heavy and heavy-heavy classes. Four fuel economy scenario's for different technological improvements were studied. Improvement of fuel economy for light and heavy-heavy duty vehicle classes provides significant total fuel savings. Truck dieselization of light and light-heavy duty vehicle classes provides the largest improvement of fuel usage due to the fact that they have large numbers of vehicles and presently have few diesels. Total car and truck fuel usage in the 1980's shows roughly a constant demand with cars decreasing due to improved new fleet fuel economy and trucks increasing due to a larger population with better fuel economy due to dieselization and improved technology.
Technical Paper

The Effect of Fuel Injection Rate and Timing on the Physical, Chemical, and Biological Character of Particulate Emissions from a Direct Injection Diesel

1981-09-01
810996
Formation of pollutants from diesel combustion and methods for their control have been reviewed. Of these methods, fuel injection rate and timing were selected for a parametric study relative to total particulate, soluble organic fraction (SOF), sulfates, solids and NO and NO2 emissions from a heavy-duty, turbocharged, after-cooled, direct-injection (DI) diesel. Chemical analyses of the SOF were performed at selected engine conditions to determine the effects of injection rate and timing on each of the eight chemical subfractions comprising the SOF. Biological character of the SOF was determined using the Ames Salmonella/microsome bioassay.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

The Design of a 4 Wheel Steer-4 Wheel Hydrostatic Drive All-Terrain Vehicle for REV-74

1975-02-01
750144
Recreational Ecological Vehicle (REV) 74 was an intercollegiate All Terrain Vehicle (ATV) design competition organized by the Milwaukee and Cincinnati Sections of SAE. Students from six colleges built ATV's to compete May 30-June 1, 1974 at Michigan Technological University's Keweenaw Research Center test course. Competing categories of noise level, destructiveness to terrain and a 25 mile race over land and water are discussed from the viewpoint of the technical rules and as to the actual course involved with the competition. Michigan Tech designed and built a 4 wheel steer-4 wheel hydrostatic drive ATV for REV-74. This paper provides a detailed design description of the Michigan Tech vehicle along with a review of several production ATV designs and their specifications. Finally, a report of the results of REV-74 is presented.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

Modeling and Numerical Simulation of Diesel Particulate Trap Performance During Loading and Regeneration

2002-03-04
2002-01-1019
A 2-dimensional numerical model (MTU-FILTER) for a single channel of a honeycomb ceramic diesel particulate trap has been developed. The mathematical modeling of the filtration, flow, heat transfer and regeneration behavior of the particulate trap is described. Numerical results for the pressure drop and particulate mass were compared with existing experimental results. Parametric studies of the diesel particulate trap were carried out. The effects of trap size and inlet temperature on the trap performance are studied using the trap model. An approximate 2-dimensional analytical solution to the simplified Navier-Stokes equations was used to calculate the velocity field of the exhaust flow in the inlet and outlet channels. Assuming a similarity velocity profile in the channels, the 2-dimensional Navier-Stokes equations are approximated by 1-dimenisonal conservation equations, which is similar to those first developed by Bissett.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Technical Paper

Mobile Electric Power Technologies for the Army of the Future

1989-09-01
891876
A technology assessment of engines, power source and electrical technologies that can meets the needs of the future U.S. Army (“Army 21”) for cost-effective generator sets is made. Considered in this assessment are: diesel engines; stratified-charge, spark-ignited engines; homogeneous-charge, spark-ignited engines; gas turbine engines; and Stirling engines. Direct energy conversion devices including batteries, fuel cells, thermal-to-electric generators, and nuclear powered systems are also considered. In addition, potential advances in electric alternators and power conditioning, applications of networking, and noise reduction methods are discussed for possible application to the Army environment. Recommendations are made for the potential application of the different technologies for the needs of Army 21.
Technical Paper

Extended Kalman Filter to Estimate NO, NO2, Hydrocarbon and Temperatures in a DOC during Active Regeneration and Under Steady State Conditions

2015-04-14
2015-01-1059
Diesel Oxidation Catalysts (DOC) are used on heavy duty diesel engine applications and experience large internal temperature variations from 150 to 600°C. The DOC oxidizes the CO and HC in the exhaust to CO2 and H2O and oxidizes NO to NO2. The oxidation reactions are functions of its internal temperatures. Hence, accurate estimation of internal temperatures is important both for onboard diagnostic and aftertreatment closed loop control strategies. This paper focuses on the development of a reduced order model and an Extended Kalman Filter (EKF) state estimator for a DOC. The reduced order model simulation results are compared to experimental data. This is important since the reduced order model is used in the EKF estimator to predict the CO, NO, NO2 and HC concentrations in the DOC and at the outlet. The estimator was exercised using transient drive cycle engine data. The closed loop EKF improves the temperature estimate inside the DOC compared to the open loop estimator.
X