Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Computer Vision-Based V2X Collaborative Perception

2022-03-29
2022-01-0073
This paper presents the computer vision-based V2X collaborative perception. Our system uses a forward-looking camera in the host vehicle. The camera detects road users such as pedestrians, vehicles, and motorcycles. Such information includes object type, relative location, direction, and speed. This information is used to compose proxy Basic Safety Messages on behalf of the detected objects. Early adopters of the V2X technology can experience the benefits of enhanced V2X market penetration. The outcome of adopting this concept will result in an inflated V2X market penetration rate leading to earlier safety, mobility, and situational awareness improvements. The ultimate goal is for all road participants to be fully aware of each other. The novelty of our work is the integration of computer vision-based detection and LTE-V V2X communications, in addition to implementing the concept for pedestrians and bicyclists.
Technical Paper

Assessment of Novel V2X Applications Using a Simulation Platform

2021-04-06
2021-01-0115
Vehicle to Everything (V2X) technology has been studied extensively in the past years. Limited pilot and production deployments, and research work have demonstrated V2X benefits. These include improvement to safety, mobility conditions and environmental benefits. Several safety and mobility applications have been investigated in literature. Nonetheless, V2X holds a potential for broader innovation in connected and automated vehicle applications. Feasibility assessment and algorithm validation of such applications may prove to be challenging. This results from costs associated with test track rental and equipping vehicles with V2X technology. Besides, limited V2X penetration rate leads to unavailability of naturalistic testing environment. In this paper, we investigate the use of the autonomous vehicle simulation, named Carla, for V2X application validation. Carla is an open source project that we altered to enable V2X applications assessment.
X