Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Study on Knocking Characteristics for High-Efficiency Operation of a Super-Lean Spark Ignition Engine

2018-10-30
2018-32-0002
This study investigated the influence of EGR and spark advance on knocking under high compression ratio, ultra-lean mixture and supercharged condition using premium gasoline as a test fuel. A high-compression ratio, supercharged single cylinder engine was used in this experiment. As a result, the period from ignition to autoignition was prolonged. In addition, knock intensity was drastically reduced. In other words, it is inferred that by combining an appropriate amount of EGR and spark advance, high efficiency operation avoiding knocking can be realized.
Technical Paper

Study on Combustion and Exhaust Gas Emission Characteristics of Lean Gasoline-Air Mixture Ignited by Diesel Fuel Direct Injection

1998-10-19
982482
The uniform lean gasoline-air mixture was provided to diesel engine and was ignited by direct diesel fuel injection. The mixing region that is formed by diesel fuel penetration and entrainment of ambient mixture is regarded as combustible turbulent jet. The ignition occurs in this region and the ambient lean mixture is burned by flame propagation. The lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An increase of diesel fuel injection is effective to ensure combustion and ignition. As diesel fuel injection increases, HC concentration decreases, and NOx and CO concentration increases.
Technical Paper

Simultaneous measurements of absorption and emission in preflame reaction under knocking operation

2000-06-12
2000-05-0159
There is an urgent need today to improve the thermal efficiency of spark- ignition (SI) engines in order to reduce carbon dioxide emission and conserve energy in an effort to prevent global warming. However, a major obstacle to improving thermal efficiency by raising the compression ratio of SI engine is the easily occurrence of engine knocking. The result of studies done by numerous researchers have shown that knocking is an abnormal combustion in which the unburned gas in the end zone of the combustion chamber autoignites. However, the combustion reaction mechanism from autoignition to the occurrence of knocking is still not fully understood. The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influence of Autoignition and Pressure Wave Behavior on Knock Intensity Based on Multipoint Pressure Measurement and In-Cylinder Visualization of the End Gas

2018-10-30
2018-32-0001
In this study, the effect of autoignition behavior in the unburned end-gas region on pressure wave formation and knock intensity was investigated. A single-cylinder gasoline engine capable of high-speed observation of the end gas was used in the experiments. Visualization in the combustion chamber and spectroscopic measurement of light absorption by the end gas were carried out to analyze autoignition behavior in the unburned end-gas portion and the reaction history before autoignition. The process of autoignition and pressure wave growth was investigated by analyzing multipoint pressure histories. As a result, it was found that knocking intensity increases through interaction between autoignition and pressure waves.
Technical Paper

Improvement of Engine Performance With Lean Mixture Ignited By Diesel Fuel Injection and Internal Egr

2000-06-12
2000-05-0076
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. The internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the mixture temperature. The test engine was a 4-stroke, single- cylinder direct-injection diesel engine. The cooling system was forced-air cooling and displacement volume was about 211 (cm3). The compression ratio was about 19.9:1. The experiment was made under constant engine speed of 3000 (r/min). The boost pressure was maintained at 101.3 (kPa). Five values of mass flow rate of diesel fuel injection were selected from 0.060 (g/s) to 0.167 (g/s) and five levels of back pressure: 0), 26.7, 53.3, 80.0 and 106.6 (kPa) were selected for the experiment. The effect of internal EGR is varied by the back pressure level.
Technical Paper

Engine Performance of Lean Methanol-Air Mixture Ignited by Diesel Fuel Injection Applied with Internal EGR

2000-06-19
2000-01-2012
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by direct diesel fuel injection. In this study, the internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the temperature of the mixture before the ignition. It is confirmed that the lean methanol-air mixture of air-fuel ratio between 130 and 18 could be ignited and burned when the back pressure of 80 [kPa] is added. The ignition and combustion characteristics can be improved by the internal EGR, however the engine performance and NOx emission deteriorated.
Technical Paper

Combustion Characteristics and Exhaust Gas Emissions of Lean Mixture Ignited by Direct Diesel Fuel Injection with Internal EGR

1999-09-28
1999-01-3265
The uniform lean gasoline-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. In this study, the internal EGR is add to this ignition method in order to activate the fuel in the mixture before the ignition. It is confirmed that the lean mixture of air-fuel ratio between 150 and 40 could be ignited and burned by this ignition method when the back pressure of 80 [kPa] is added, and the burning period is shorted by internal EGR. However, as the back pressure increases, NOx concentration is increased by the high temperature residual gas.
Technical Paper

Analysis of Supercharged HCCI Combustion Using Low-Carbon Alternative Fuels

2017-11-05
2017-32-0085
This study investigated the effects of recirculated exhaust gas (EGR) and its principal components of N2, CO2 and H2O on moderating Homogeneous Charge Compression Ignition (HCCI) combustion. Experiments were conducted using two types of gaseous fuel blends of DME/propane and DME/methane as the test fuels. The addition rates of EGR, N2, CO2 and H2O were varied and the effects of each condition on HCCI combustion of propane and methane were investigated. The results revealed that the addition of CO2 and H2O had the effect of substantially delaying and moderating rapid combustion. The addition of N2 showed only a slight delaying and moderating effect. The addition of EGR had the effect of optimally delaying the combustion timing, while either maintaining or increasing the indicated mean effective pressure and indicated thermal efficiency ηi.
Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Technical Paper

A Study of the Factors Determining Knocking Intensity Based on High-Speed Observation of End-Gas Autoignition Using an Optically Accessible Engine

2018-10-30
2018-32-0003
The purpose of this study was to investigate how autoignition leads to the occurrence of pressure oscillations. That was done on the basis of in-cylinder visualization and analysis of flame images captured with a high-speed camera using an optically accessible engine, in-cylinder pressure measurement and measurement of light emission from formaldehyde (HCHO). The results revealed that knocking intensity tended to be stronger with a faster localized growth speed of autoignition. An investigation was also made of the effect of exhaust gas recirculation (EGR) as a means of reducing knocking intensity. The results showed that the application of EGR advanced the ignition timing, thereby reducing knocking intensity under the conditions where knocking occurred.
Technical Paper

A Study of HCCI Operating Range Expansion by Applying Reaction Characteristics of Low-Carbon Alternative Fuels

2016-11-08
2016-32-0011
Issues that must be addressed to make Homogeneous Charge Compression Ignition (HCCI) engines a practical reality include the difficulty of controlling the ignition timing and suppression of rapid combustion under high load conditions. Overcoming these issues to make HCCI engines viable for practical application is indispensable to the further advancement of internal combustion engines. Previous studies have reported that the operating region of HCCI combustion can be expanded by using DME and Methane blended fuels.(1), (2), (3), (4), (5) The reason is that the reaction characteristics of these two low-carbon fuels, which have different ignition properties, have the effect of inducing heat release in two stages during main combustion, thus avoiding excessively rapid combustion. However, further moderation of rapid combustion in high-load region is needed to expand the operation region. This study focused on supercharging and use of blended fuels.
Technical Paper

8 A Study of the Influence of Fuel Temperature on Emission Characteristics and Engine Performance of Compression Ignition Engine

2002-10-29
2002-32-1777
In this study, the heated fuels were provided to the diesel engine in order to activate the fuel before the injection. Two test fuels: the normal diesel fuel and cetane, which have different boiling points were used. For both normal diesel fuel and cetane, crank angles at ignition and maximum pressure are delayed and the maximum combustion pressure is decreased as the fuel temperature rises. In cases of large and middle mass flow rate of fuel injection, the brake thermal efficiency and brake mean effective pressure are decreased when the fuel temperature is higher than 570 [K]. However, in the case of small mass flow rate of fuel injection, the brake thermal efficiency is almost independent of fuel temperature. HC and CO concentrations in the exhaust gas emission show constant values regardless of fuel temperature. However, NOx concentration is gradually decreased as the fuel temperature rises.
X