Refine Your Search

Topic

Search Results

Technical Paper

Z-type Schlieren Setup and its Application to High-Speed Imaging of Gasoline Sprays

2011-08-30
2011-01-1981
Schlieren and shadowgraph imaging have been used for many years to identify refractive index gradients in various applications. For evaporating fuel sprays, these techniques can differentiate the boundary between spray regions and background ambient gases. Valuable information such as the penetration rate, spreading angle, spray structure, and spray pattern can be obtained using schlieren diagnostics. In this study, we present details of a z-type schlieren system setup and its application to port-fuel-injection gasoline sprays. The schlieren high-speed movies were used to obtain time histories of the spray penetration and spreading angle. Later, these global parameters were compared to specifications provided by the injector manufacturer. Also, diagnostic parameters such as the proportion of light cut-off at the focal point and the orientation of knife-edge (schlieren-stop) used to achieve the cut-off were examined.
Technical Paper

Vortex Development and Heat Release Enhancement in Diesel Spray Flame by Inversed-Delta Injection Rate Shaping Using TAIZAC Injector

2021-09-05
2021-24-0037
The enhancement of vortex development, fuel-air mixing and heat release in diesel spray flame by inversed-delta injection rate shaping, having been predicted via LES simulation with detailed chemical kinetics, is experimentally confirmed for the first time. Newly developed 3-injector TAIZAC (TAndem Injector Zapping ACtivation) injector realizing aggressive inversed-delta injection rate shaping was used for single-shot combustion experiments in a constant volume combustion vessel. Simultaneous high-speed (120,000fps) and high-resolution (1,280 x 704 pixels) laser schlieren and UV OH* chemiluminescence imaging combined with subsequent Flame Imaging Velocimetry (FIV) analysis was employed to elucidate the correlation between vortex development and enhanced heat release.
Technical Paper

The Fuel Economy Improvement through the Knock Margin Expansion in a Turbocharged Gasoline Direct Injection Engine

2018-09-10
2018-01-1671
Knocking combustion limits the downsized gasoline engines’ potential for improvement with regard to fuel economy. The high in-cylinder pressure and temperature caused by the adaptation of a turbocharger aggravates the tendency of the end-gas to autoignite. Thus, the knocking combustion does not allow for further advancing of the combustion phase. In this research, the effects of the ignition and valve timings on knocking combustion were investigated under steady-state conditions. Moreover, the optimal ignition and valve timings for the transient operations were derived with the aim of a greater fuel economy improvement, based on the steady-state analysis. A 2.0 liter turbocharged gasoline direct injection engine with continuously variable valve timing (CVVT), was utilized for this experiment. 2, 10, and 18 bar brake mean effective pressure (BMEP) load conditions were used to represent the low, medium, and high load operations, respectively.
Technical Paper

The Effects of Two-Stage Fuel Injection on Dimethyl-ether (DME) Homogeneous Charge Compression Ignition Engine Combustion

2009-09-13
2009-24-0104
Two-stage injection strategy was studied in dimethyl-ether homogeneous charge compression ignition engine combustion. An early direct injection, main injection, was applied to form a premixed charge followed by the second injection after the start of heat release. Experiments were carried out in a single-cylinder direct-injection diesel engine equipped with a common-rail injection system, and the combustion performance and exhaust emissions were tested with the various second injection timings and quantities. Engine speed was 1200 rpm, and the load was fixed at 0.2 MPa IMEP. Main injection timing for homogeneous mixture was fixed at −80 CAD, and the fuel quantity was adjusted to the fixed load. Second injection quantity was varied from 1 to 5 mg, and the timing was selected according to the heat release rate of the HCCI combustion without second injection.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Journal Article

Spray Penetrations of Ethanol, Gasoline and Iso-Octane in an Optically Accessible Spark-Ignition Direct-Injection Engine

2014-11-01
2014-01-9079
The spray development of ethanol, gasoline and iso-octane has been studied in an optically accessible, spark-ignition direct-injection (SIDI) engine. The focus is on how fuel properties impact temporal and spatial evolution of sprays at realistic ambient conditions. Two optical facilities were used: (1) a constant-flow spray chamber simulating cold-start conditions and (2) a single-cylinder SIDI engine running at normal, warmed-up operating conditions. In these optical facilities, high-speed Mie-scattering imaging is performed to measure penetrations of spray plumes at various injection pressures of 4, 7, 11 and 15 MPa. The results show that the effect of fuel type on the tip penetration length of the sprays depends on the injection conditions and the level of fuel jet atomisation and droplet breakup.
Technical Paper

Particle Reduction in LPG Lean Stratified Combustion by Intake Strategies

2019-04-02
2019-01-0253
Lean stratified combustion shows high potential to reduce fuel consumption because it operates without the intervention of a throttle valve. Despite its high fuel economy potential, it emits large amounts of particulate matter (PM) because the locally rich mixture is formed at the periphery of a spark plug. Furthermore, the combustion phasing angle is not realized at MBT ignition timing, which can bring high work conversion efficiency. Since PM emission and work conversion efficiency are in a trade-off relation, this research focused on reducing PM emission through achieving high work conversion efficiency. Two intake air control strategies were examined in this research; throttle operation and late intake valve closing (LIVC). The experiment was conducted in a single cylinder spray-guided direct injection spark ignition (SG-DISI) engine with liquefied petroleum gas (LPG). The injected fuel amount was fixed so as to investigate the effect of each strategy.
Technical Paper

Operating Range of Low Temperature Diesel Combustion with Supercharging

2009-04-20
2009-01-1440
Low temperature diesel combustion with a large amount of exhaust gas recirculation in a direct injection diesel engine was investigated. Tests were carried out under various engine speeds, injection pressures, injection timings, and injection quantities. Exhaust emissions and brake specific fuel consumption were measured at different torque and engine speed conditions. High rates of exhaust gas recirculation led to the simultaneous reduction of nitrogen oxide and soot emissions due to a lower combustion temperature than conventional diesel combustion. However, hydrocarbon and carbon monoxide emissions increased as the combustion temperature decreased because of incomplete combustion and the lack of an oxidation reaction. To overcome the operating range limits of low temperature diesel combustion, increased intake pressure with a modified turbocharger was employed.
Technical Paper

Operating Characteristics of DME-Gasoline Dual-fuel in a Compression Ignition Engine at the Low Load Condition

2013-03-25
2013-01-0049
Combustion and emission characteristics were investigated in a compression ignition engine with dual-fuel strategy using dimethyl ether (DME) and gasoline. Experiments were performed at the low load condition corresponding to indicated mean effective pressure of 0.45 MPa. DME was directly injected into the cylinder and gasoline was injected into the intake manifold during the intake stroke. The proportion of DME in the total input energy was adjusted from 10% to 100%. DME DME injection timing was widely varied to investigate the effect of injection timing on the combustion phase. Injection pressure of DME was varied from 20 MPa to 60 MPa. Exhaust gas recirculation (EGR) was controlled from 0% to 60% to explore the effect of EGR on the combustion and emission characteristics. As DME proportion was decreased with the increased portion of gasoline, the combustion efficiency was decreased but thermal efficiency was increased.
Technical Paper

Mode Transition between Low Temperature Combustion and Conventional Combustion with EGR and Injection Modulation in a Diesel Engine

2011-04-12
2011-01-1389
Mode transition between low temperature combustion and conventional combustion was investigated in a direct injection diesel engine. Low temperature diesel combustion was realized by means of high exhaust gas recirculation rate (69~73%) and early injection timing (-28~ -16 crank angle degree after top dead center) compared with those (20% exhaust gas recirculation rate and -8 crank angle degree after top dead center) of conventional combustion. Tests were carried out at different engine speeds and injection pressures. Exhaust gas recirculation rate was changed transiently by controlling each throttle angle for fresh air and exhaust gas recirculation to implement mode transition. Various durations for throttle transition were applied to investigate the effect of speed change of exhaust gas recirculation rate on the characteristics of mode transition.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

2017-03-28
2017-01-0693
This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Journal Article

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

2018-04-03
2018-01-1418
Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure, and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two high-speed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires.
Technical Paper

Gas Flows Through the Inter-Ring Crevice and Their Influence on UHC Emissions

1999-05-03
1999-01-1533
Influence of the inter-ring crevice, the volume between the top and second piston rings, on unburned hydrocarbon (UHC) emission was experimentally and numerically investigated. The ultimate goal of this study was to estimate the level of UHC emission induced by the blow-up of inter-ring mixture, i.e., unburned gases trapped in the inter-ring crevice. In the experiments, the inter-ring mixture was extracted to the crankcase during the late period of expansion and the early period of exhaust stroke through the engraved grooves on the lower part of cylinder wall. Extraction of the mixture resulted in the significant reductions of UHC emission in proportion to the increments of blowby flow rate, without any losses in efficiency and power. This experimental study has confirmed the importance of inter-ring crevice on UHC emission in an SI engine and established a relationship between the inter-ring mixture and UHC emission.
Technical Paper

Flame Propagation Characteristics in a Heavy Duty LPG Engine with Liquid Phase Port Injection

2002-05-06
2002-01-1736
Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean burn operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean burn performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using a UV intensified high-speed CCD camera. Concepts of flame area speed, in addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics.
Technical Paper

Evaluation of swirl ratio effects on the flow fields using Particle Image Velocimetry and Flame image Velocimetry in a small-bore optical compression-ignition engine

2023-09-29
2023-32-0061
This study applies high-speed particle image velocimetry (HS-PIV) and flame image velocimetry (HS-FIV) to show flow fields under the effect of varied swirl ratios in a small-bore optical compression-ignition engine. The base swirl ratio and maximum swirl ratio conditions were applied to investigate structures, magnitude and turbulence distribution of the in-cylinder flow as well as the flow within the flame. For each swirl ratio, 100 individual cycles were measured for PIV analysis at motoring conditions and then another 100 cycles for FIV analysis at firing conditions. The derived flow fields were ensemble averaged to show flow structure evolution while the spatial filtering method was applied to extract high-frequency flow component for the analysis of turbulence distributions. The results showed that the intake air flow generates undefined, chaotic flow fields, which are followed by a gradual production of an asymmetric swirl flow.
Technical Paper

Effects of Hot and Cooled EGR for HC Reduction in a Dual-Fuel Premixed Charge Compression Ignition Engine

2018-09-10
2018-01-1730
Most internal combustion engine makers have adopted after-treatment systems, such as selective catalytic reduction (SCR), diesel particulate filter (DPF), and diesel oxidation catalyst (DOC), to meet emission regulations. However, as the emission regulations become stricter, the size of the after-treatment systems become larger. This aggravates the price competitiveness of engine systems and causes fuel efficiency to deteriorate due to the increased exhaust pressure. Dual-fuel premixed charge compression ignition (DF-PCCI) combustion, which is one of the advanced combustion technologies, makes it possible to reduce nitrogen oxides (NOx) and particulate matter (PM) during the combustion process, while keeping the combustion phase controllability as a conventional diesel combustion (CDC). However, DF-PCCI combustion produces high amounts of hydrocarbon (HC) and carbon monoxide (CO) emissions due to the bulk quenching phenomenon under low load conditions as a huddle of commercialization.
Technical Paper

Effects of High-Response TiAl Turbine Wheel on Engine Performance under Transient Conditions

2015-09-01
2015-01-1881
Transient tests in a 2.0 liter in-line 4 cylinder downsizing gasoline direct injection engine were conducted under various transient conditions in order to investigate effects of lower rotational inertia of titanium aluminide alloy (TiAl) turbine wheel on engine and turbocharger performances. As a representative result, fast boost pressure build up was achieved in case of TiAl turbocharger compared to Inconel turbocharger. This result was mainly due to lower rotational inertia of TiAl turbine wheel. Engine torque build up response was also improved with TiAl turbocharger even though engine torque response gap between both turbochargers was slightly reduced due to retarded combustion phase. In addition, with advanced ignition timing, fuel consumption became less than that of Inconel turbocharger with similar engine torque response.
Technical Paper

Effects of Exhaust Throttling on Engine Performance and Residual Gas in an SI Engine

2004-10-25
2004-01-2974
Combustion in engines can be controlled by the amount of residual gas, which has high temperature and heat capacity compared with fresh charge. Residual gas also acts like a dilution gas during combustion period. Accordingly, combustion duration increases, while the peak combustion temperature and nitrogen oxides (NOx) decreases. Amount of residual gas is affected by pressure difference between exhaust and intake, valve timing and engine speed. The main objective of this work is to identify the effects of exhaust throttle, valve timing and load conditions on residual gas fraction and engine performance. The intake valve open timing was varied freely under fixed exhaust valve close (EVC) timing. Additionally, exhaust throttle has been installed in the exhaust manifold to build up the exhaust back-pressure allowing extra amount of exhaust gases to be admitted into the cylinder during the valve overlap duration.
Technical Paper

Effects of Engine Operating Conditions on Catalytic Converter Temperature in an SI Engine

2002-05-06
2002-01-1677
To meet stringent emission standards, a considerable amount of development work is necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to reduce the engine cold-start emissions. Close-coupled catalyst (CCC) provides fast light-off time by utilizing the energy in the exhaust gas. However, if some malfunction occurred during engine operation and the catalyst temperature exceeds 1050°C, the catalytic converter becomes deactivated and shows poor conversion efficiency. Close-coupled catalyst temperature was investigated under various engine operating conditions. All of the experiments were conducted with a 1.0L SI engine at 1500-4000 rpm. The engine was operated at no load to full load conditions. Exhaust gas temperature and catalyst temperature were measured as a function of lambda value (0.8-1.2), ignition timing (BTDC 30°-ATDC 30°) and misfire rates (0-28%).
Technical Paper

Effect of Injection Parameters on the Combustion and Emission Characteristics in a Compression Ignition Engine Fuelled with Waste Cooking Oil Biodiesel

2013-10-14
2013-01-2662
An experimental study was conducted to investigate the impact of injection parameters on the combustion and emission characteristics in a compression ignition engine fuelled with neat waste cooking oil (WCO) biodiesel. A single-cylinder diesel engine equipped with common-rail system was used in this research. The test was performed over two engine loads at an engine speed of 800 r/min. Injection timing was varied from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) at two different injection pressures (80 and 160 MPa). Based on in-cylinder pressure, heat release rate was calculated to analyze the combustion characteristics. Carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and smoke were measured to examine the emission characteristics. The results showed that the indicated specific fuel consumption (ISFC) of WCO biodiesel was higher than that of diesel. The ISFC was increased as the injection timing was advanced and injection pressure was increased.
X