Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

Quiet Supersonic Jet Engine Performance Tradeoff Analysis Using a Response Surface Methodology Approach

2002-11-05
2002-01-2929
Recent market studies indicate a renewed interest for a quiet Supersonic Business Jet (SBJ). The success of such a program will be strongly dependent upon the achievement of stringent engine noise, emissions and fuel consumption goals. This paper demonstrates the use of advanced design methods to develop a parametric design space exploration environment which will be ultimately used for the identification of an engine concept capable of satisfying acoustic levels imposed by FAR part 36 (stage IV) and NOx and CO2 standards as stated in the 1996 ICAO. The engine performance is modeled through the use of Response Surface and Design of Experiments Techniques, enabling the designer/decision-maker to change initial engine parameter values to detect the effects of the responses in a time efficient manner. Engine performance and engine weight results are obtained through physics-based engine analysis codes developed by NASA.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

New Approaches to Multidisciplinary Synthesis: An Aero-Structures-Control Application Using Statistical Techniques

1996-10-01
965501
An evolving aircraft synthesis simulation environment which offers improvements to existing methods at multiple levels of a design process is described in this paper. As design databases become obsolete due to the introduction of new technologies and classes of vehicles and as sophisticated analysis codes are often too computationally expensive for iterative applications, the design engineer may find a lack of usable information needed for decision making. Within the environment developed in this paper, rapid sensitivity analysis is possible through a unique representation of the relationship between fundamental design variables and system objectives. The combined use of the Design of Experiments and Response Surface techniques provides the ability to form this design relationship among system variables and target values, which is termed design-oriented in nature.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
Technical Paper

Implementation of a Physics-Based Decision-Making Framework for Evaluation of the Multidisciplinary Aircraft Uncertainty

2003-09-08
2003-01-3055
In today's business climate, aerospace companies are more than ever in need of rational methods and techniques that provide insights as to the best strategies which may be pursued for increased profitability and risk mitigation. However, the use of subjective, anecdotal decision-making remains prevalent due to the absence of analytical methods capable of capturing and forecasting future needs. Negotiations between airframe and engine manufacturers could benefit greatly from a structured environment that facilitates efficient, rational, decision-making. Creation of such an environment can be developed through a parametric physics-based, stochastic formulation that uses Response Surface Equations as meta-models to expedite the process.
Technical Paper

Implementation of Parametric Anaylsis to the Aerodynamic Design of a Hypersonic Strike Fighter

2000-10-10
2000-01-5561
A Hypersonic Strike Fighter (HSF) would provide many benefits over current fighters, including increased effectiveness and survivability. However, there are many design challenges to developing such a vehicle. Therefore the conceptual design of an HSF requires the development of new tools and methods to analyze and select vehicle concepts. A parametric method was developed to determine aerodynamic characteristics of hypersonic vehicles in a rapid, automated way. This parametric method and other tools were then used to select a baseline design and optimize this baseline for the notional mission.
Technical Paper

Formulation, Realization, and Demonstration of a Process to Generate Aerodynamic Metamodels for Hypersonic Cruise Vehicle Design

2000-10-10
2000-01-5559
The desire to facilitate the conceptual and preliminary design of hypersonic cruise vehicles has created the need for simple, fast, versatile, and trusted aerodynamic analysis tools. Metamodels representing physics-based engineering codes provide instantaneous access to calibrated tools. Nonlinear transformations extend the capability of metamodels to accurately represent a large design space. Independence, superposition, and scaling properties of the hypersonic engineering method afford an expansive design space without traditional compounding penalties. This one-time investment results in aerodynamic and volumetric metamodels of superior quality and versatility which may be used in many forms throughout early design. As a module, they can be an integral component within a multidisciplinary analysis and optimization package. Aerodynamic polars they produce may provide performance information for mission analysis.
Technical Paper

Formulation of an Integrating Framework for Conceptual Object-Oriented Systems Design

2003-09-08
2003-01-3053
In this paper, a brief overview is given of the different alternatives to an integrating computational framework. A new framework will be introduced, which incorporates the latest computational techniques and more importantly a mind-set emphasizing flexibility, modularity, portability and re-usability. This introduction will include a thorough review of the fundamental design decisions that went into developing this new integrated computational framework. Distributed object computing extends an object-oriented system which allows objects to interact across heterogenous networks and interoperate as a unified whole. Integrated computing frameworks are discussed, together with data transport techniques such as Extensible Markup Language (XML) and Simple Object Access Protocol (SOAP) to achieve platform, code and meta-model independent integration.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

Development of Response Surface Equations for High-Speed Civil Transport Takeoff and Landing Noise

1997-10-01
975570
As an element of a design optimization study of high speed civil transport (HSCT), response surface equations (RSEs) were developed with the goal of accurately predicting the sideline, takeoff, and approach noise levels for any combination of selected design variables. These RSEs were needed during vehicle synthesis to constrain the aircraft design to meet FAR 36, Stage 3 noise levels. Development of the RSEs was useful as an application of response surface methodology to a previously untested discipline. Noise levels were predicted using the Aircraft Noise Prediction Program (ANOPP), with additional corrections to account for inlet and exhaust duct lining, mixer-ejector nozzles, multiple fan stages, and wing reflection. The fan, jet, and airframe contributions were considered in the aircraft source noise prediction.
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Bi-level Integrated System Synthesis: A Proposed Application to Aeroelastic Constraint Analysis in a Conceptual Design Environment

2003-09-08
2003-01-3060
The projection of aeroelastic constraints in the design space has long been a want in the design process of vehicles. These properties are usually not established accurately until later phases of design. The desire is to bring another interactive constraint to the conceptual design phase and allow the designer to see the impact of design decisions on aeroelastic characteristics. Even though a number of analysis and optimization tools have been developed to support aeroelastic analysis and optimization in the flight vehicle design process, the toolbox is far from being complete. The results often cannot be obtained in a manner timely enough and the natural division of the engineering team into specialty groups is not supported very well by the aerodynamic-structures monolithic codes typically in the above toolbox. The monolithic codes are also not amenable to the use of concurrent processing now made available by computer technology.
Technical Paper

An Improved Process for the Generation of Drag Polars for use in Conceptual/Preliminary Design

1999-10-19
1999-01-5641
One of the most essential contributors in the aircraft sizing and synthesis process is the creation and utilization of accurate drag polars. An improved general procedure to generate drag polars for conceptual and preliminary design purposes in the form of Response Surface Equations is outlined and discussed in this paper. This approach facilitates and supports aerospace system design studies as well as Multi-disciplinary Analysis and Optimization. The analytically created Response Surface Equations replace the empirical aerodynamic relations or historical data found in sizing and synthesis codes, such as the Flight Optimization System (FLOPS). These equations are commonly incorporated into system level studies when a configuration falls beyond the conventional realm. The approach described here is a statistics-based methodology, which combines the use of Design of Experiments and Response Surface Method (RSM).
Technical Paper

An Improved Procedure for Prediction of Drag Polars of a Joined Wing Concept Using Physics-Based Response Surface Methodology

2001-09-11
2001-01-3015
Creation and utilization of accurate drag polars is essential in the aircraft sizing and synthesis process. Existing sizing and synthesis codes are based on historical data and cannot capture the aerodynamics of a non-conventional aircraft at the conceptual design phase. The fidelity of the aerodynamic analysis should be enhanced to increase the designer’s confidence in the results. Hence, there is need for a physics-based approach to generate the drag polars of an aircraft lying outside the conventional realm. The deficiencies of the legacy codes should be removed and replaced with higher fidelity meta-model representations. This is facilitated with response surface methodology (RSM), which is a mathematical and statistical technique that is suited for the modeling and analysis of problems in which the responses, the drag coefficients in this case, are influenced by several variables. The geometric input variables are chosen so that they represent a multitude of configurations.
Technical Paper

An Automated Robust Process for Physics Based Aerodynamic Prediction

2000-10-10
2000-01-5565
By Combining the Response Surface Methodology with a classical Design of Experiments formulation, a robust method was developed to facilitate the aerodynamic analysis of conceptual designs. These aerodynamic predictions, presented in a parametric form, can then be furnished to a sizing and synthesis code for further evaluation of the concept at the system level. The computational basis of this methodology is a set of numerical codes that work in unison to both optimize the geometry for minimal drag and evaluate key aerodynamic parameters such as lift, friction, wave and induced drag coefficients. Code fidelity and sensitivity to a wide variety of input parameters such as aircraft geometry, panel layout, number of panels used, flow theory used within the numerical code, etc. was investigated. The numerical results were compared with experimental data for different configurations, and the code input parameters required for the best correlation were grouped according to aircraft type.
Technical Paper

A Method for Concept Exploration of Hypersonic Vehicles in the Presence of Open & Evolving Requirements

2000-10-10
2000-01-5560
Several unique aspects of the design of hypersonic aerospace systems necessitate a truly multidisciplinary approach from the outset of the program. These coupled with a vague or changing requirements environment, provide an impetus for the development of a systematic and unified approach for the exploration and evaluation of alternative hypersonic vehicle concepts. The method formulated and outlined in this paper is founded upon non-deterministic conceptual & preliminary design formulations introduced over the past decade and introduces the concept of viewing system level requirements in a similar manner. The proposed method is then implemented for the concept exploration and design of a Hypersonic Strike Fighter in the presence of ambiguous open and/or evolving requirements.
Technical Paper

A Bayesian Approach to Non-Deterministic Hypersonic Vehicle Design

2001-09-11
2001-01-3033
Affordable, reliable endo- and exoatmospheric transportation, for both the military and commercial sectors, grows in importance as the world grows smaller and space exploration and exploitation increasingly impact our daily lives. However, the impact of disciplinary, operational, and technological uncertainties inhibit the design of the requisite hypersonic vehicles, an inherently multidisciplinary and non-deterministic process. Without investigation, these components of design uncertainty undermine the designers’ decision-making confidence. In this paper, the authors propose a new probabilistic design method, using Bayesian Statistics techniques, which allows assessment of the impact of disciplinary uncertainty on the confidence in the design solution. The proposed development of a two-stage reusable launch vehicle configuration highlights the means to first quantify the fidelity of the disciplinary analysis tools utilized, then propagate such to the vehicle system level.
X