Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation of the Generalized RNG Turbulence Model and Its Application to Flow in a HSDI Diesel Engine

2012-04-16
2012-01-0140
A generalized re-normalization group (RNG) turbulence model based on the local "dimensionality" of the flow field is proposed. In this modeling approach the model coefficients C₁, C₂, and C₃ are all constructed as functions of flow strain rate. In order to further validate the proposed turbulence model, the generalized RNG closure model was applied to model the backward facing step flow (a classic test case for turbulence models). The results indicated that the modeling of C₂ in the generalized RNG closure model is reasonable, and furthermore, the predictions of the generalized RNG model were in better agreement with experimental data than the standard RNG turbulence model. As a second step, the performance of the generalized RNG closure was investigated for a complex engine flow.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Validation of a Self Tuning Gross Heat Release Algorithm

2008-06-23
2008-01-1672
The present paper shows the validation of a self tuning heat release method with no need to model heat losses, crevice losses and blow by. Using the pressure and volume traces the method estimates the polytropic exponents (before, during and after the combustion event), by the use of the emission values and amount of fuel injected per cycle the algorithm calculates the total heat release. These four inputs are subsequently used for computing the heat release trace. The result is a user independent algorithm which results in more objective comparisons among operating points and different engines. In the present paper the heat release calculated with this novel method has been compared with the one computed using the Woschni correlation for modeling the heat transfer. The comparison has been made using different fuels (PRF0, PRF80, ethanol and iso-octane) making sweeps in relative air-fuel ratio, engine speed, EGR and CA 50.
Journal Article

Validation of Mesh- and Timestep- Independent Spray Models for Multi-Dimensional Engine CFD Simulation

2010-04-12
2010-01-0626
Resolution of droplet-scale processes occurring within engine sprays in multi-dimensional Computational Fluid Dynamics (CFD) simulations is not possible because impractically refined numerical meshes or time steps would be required. As a result, simulations that use coarse meshes and large time steps suffer from inaccurate predictions of mass, momentum and energy transfer between the spray drops and the combustion chamber gas, or poor prediction of droplet breakup and collision and coalescence processes. Several new spray models have been proposed to address these deficiencies, including use of an unsteady gas jet model to improve momentum transfer predictions in under-resolved regions of the spray, a vapor particle model to minimize numerical diffusion effects, and a Radius of Influence drop collision model to ensure consistent collision computations on different meshes.
Technical Paper

Validation of Computational Models for Isobaric Combustion Engines

2020-04-14
2020-01-0806
The focus of this study is to aid the development of the isobaric combustion engine by investigating multiple injection strategies at moderately high pressures. A three-dimensional (3D) commercial computational fluid dynamics (CFD) code, CONVERGE, was used to conduct simulations. The validation of the isobaric combustion case was carried out through the use of a single injector with multiple injections. The computational simulations were matched to the experimental data using methods outlined in this paper for different multiple injection cases. A sensitivity analysis to understand the effects of different modeling components on the quantitative prediction was carried out. First, the effects of the kinetic mechanisms were assessed by employing different chemical mechanisms, and the results showed no significant difference in the conditions under consideration.
Journal Article

Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts

2011-04-12
2011-01-0895
A multi-component fuel model is used to represent gasoline in computational fluid dynamics (CFD) simulations of a dual-fuel engine that combines premixed gasoline injection with diesel direct injection. The simulations employ detailed-kinetics mechanisms for both the gasoline and diesel surrogate fuels, through use of an advanced and efficient chemistry solver. The objective of this work is to elucidate kinetics effects of dual-fuel usage in Reactivity Controlled Compression Ignition (RCCI) combustion. The model is applied to simulate recent experiments on highly efficient RCCI engines. These engine experiments used a dual-fuel RCCI strategy with port-fuel-injection of gasoline and early-cycle, multiple injections of diesel fuel with a conventional diesel injector. The experiments showed that the US 2010 heavy-duty NO and soot emissions regulations were easily met without aftertreatment, while achieving greater than 50% net indicated thermal efficiency.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

Three-Dimensional Computations of Combustion in Premixed-Charge and Direct-Injected Two-Stroke Engines

1992-02-01
920425
Combustion and flow were calculated in a spark-ignited two-stroke crankcase-scavenged engine using a laminar and turbulent characteristic-time combustion submodel in the three-dimensional KIVA code. Both premixed-charge and fuel-injected cases were examined. A multi-cylinder engine simulation program was used to specify initial and boundary conditions for the computation of the scavenging process. A sensitivity study was conducted using the premixed-charge engine data. The influence of different port boundary conditions on the scavenging process was examined. At high delivery ratios, the results were insensitive to variations in the scavenging flow or residual fraction details. In this case, good agreement was obtained with the experimental data using an existing combustion submodel, previously validated in a four-stroke engine study.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Technical Paper

The Influence of Physical Input Parameter Uncertainties on Multidimensional Model Predictions of Diesel Engine Performance and Emissions

2000-03-06
2000-01-1178
Multidimensional models require physical inputs about the engine operating conditions. This paper explores the effects of unavoidable experimental uncertainties in the specification of important parameters such as the start of injection, duration of injection, amount of fuel injected per cycle, gas temperature at IVC, and the spray nozzle hole diameter. The study was conducted for a Caterpillar 3401 heavy-duty diesel engine for which extensive experimental data is available. The engine operating conditions include operation at high and low loads, with single and double injections. The computations were performed using a modified version of the KIVA3V code. Initially the model was calibrated to give very good agreement with experimental data in terms of trends and also to a lesser degree in absolute values, over a range of operating conditions and injection timings.
Technical Paper

The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine

1999-03-01
1999-01-0840
An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE) was used to study diesel combustion. The SCOTE retains the port, combustion chamber, and injection geometry of the production six cylinder, 373 kW (500 hp) 3406E heavy-duty truck engine. The engine was equipped with an electronic unit injector and an electronically controlled common rail injector that is capable of multiple injections. An emissions investigation was carried out using a six-mode cycle simulation of the EPA Federal Transient Test Procedure. The results show that the SCOTE meets current EPA mandated emissions levels, despite the higher internal friction imposed by the single-cylinder configuration. NOx versus particulate trade-off curves were generated over a range of injection timings for each mode and results of heat release calculations were examined, giving insight into combustion phenomena in current “state of the art” heavy-duty diesel engines.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Technical Paper

The Impact of Engine Design Constraints on Diesel Combustion System Size Scaling

2010-04-12
2010-01-0180
A set of scaling laws were previously developed to guide the transfer of combustion system designs between diesel engines of different sizes [ 1 , 2 , 3 , 4 ]. The intent of these scaling laws was to maintain geometric similarity of key parameters influencing diesel combustion such as in-cylinder spray penetration and flame lift-off length. The current study explores the impact of design constraints or limitations on the application of the scaling laws and the effect this has on the ability to replicate combustion and emissions. Multi dimensional computational fluid dynamics (CFD) calculations were used to evaluate the relative impact of engine design parameters on engine performance under full load operating conditions. The base engine was first scaled using the scaling laws. Design constraints were then applied to assess how such constraints deviate from the established scaling laws and how these alter the effectiveness of the scaling effort.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

The Effect of Valve Strategy on In-Cylinder Flow and Combustion

1996-02-01
960582
This study is focused on the effect of different valve strategies on the in-cylinder flow and combustion A conventional four-valve pentroof engine was modified to enable optical access to the combustion chamber To get information on the flow, a two-component LDV system was applied The combustion was monitored by the use of cylinder pressure in a one-zone heat release model The results show that the flow in the cylinder with the valves operating in the standard configuration has an expected tumble characteristic In this case the high frequency turbulence is homogeneous and has a peak approximately 20 CAD BTDC With one valve deactivated, the flow shows a swirling pattern The turbulence is then less homogeneous but the level of turbulence is increased When the single inlet valve was phased late against the crankshaft dramatic effects on the flow resulted The late inlet valve opening introduced a low cylinder pressure before the valve opened The high pressure difference across the valve introduced a high-velocity jet into the cylinder Turbulence was increased by a factor of two by this operational mode When two inlet valves were used, a reduction of turbulence resulted from a very late inlet cam phase
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

The Effect of Swirl on Spark Assisted Compression Ignition (SACI)

2007-07-23
2007-01-1856
Auto ignition with SI compression ratio can be achieved by retaining hot residuals, replacing some of the fresh charge. In this experimental work it is achieved by running with a negative valve overlap (NVO) trapping hot residuals. The experimental engine is equipped with a pneumatic valve train making it possible to change valve lift, phasing and duration, as well as running with valve deactivation. This makes it possible to start in SI mode, and then by increasing the NVO, thus raising the initial charge temperature it is possible to investigate the intermediate domain between SI and HCCI. The engine is then running in spark assisted HCCI mode, or spark assisted compression ignition (SACI) mode that is an acronym that describes the combustion on the borderline between SI and HCCI. In this study the effect of changing the in-cylinder flow pattern by increased swirl is studied. This is achieved by deactivating one of the two intake valves.
Journal Article

The Effect of Operating Parameters on Soot Emissions in GDI Engines

2015-04-14
2015-01-1071
Due to the upcoming regulations for particulate matter (PM) emissions from GDI engines, a computational fluid dynamic (CFD) modeling study to predict soot emissions (both mass and solid particle number) from gasoline direct injection (GDI) engines was undertaken to provide insights on how and why soot emissions are formed from GDI engines. In this way, better methods may be developed to control or reduce PM emissions from GDI engines. In this paper, the influence of engine operating parameters was examined for a side-mounted fuel injector configuration in a direct-injection spark-ignition (DISI) engine. The present models are able to reasonably predict the influences of the variables of interest compared to available experimental data or literature. For a late injection strategy, effects of the fuel composition, and spray cone angle were investigated with a single-hole injector.
Technical Paper

The Effect of In-Cylinder Flow and Turbulence on HCCI Operation

2002-10-21
2002-01-2864
The effect of in-cylinder flow and turbulence on HCCI operation has been experimentally studied by changing the combustion chamber geometry and the swirl ratio. Four different levels of turbulence were achieved, by altering the swirl ratio both for a high turbulent square bowl-in-piston combustion chamber and for a low turbulent disc combustion chamber. The swirl ratio was altered by using different inlet port designs. The results showed that the combustion chamber geometry plays a large role in HCCI combustion. With the same operating conditions, the combustion duration for the square bowl-in-piston combustion chamber was much longer compared to the disc combustion chamber. On the other hand, a moderate change in swirl ratio proved to have only modest effect on the combustion process. With early combustion timing, the gross indicated efficiency was higher when the square bowl-in-piston combustion chamber.
X