Refine Your Search

Author

Search Results

Technical Paper

System Level 1-D Analysis of an Air-System for a Heavy-Duty Gasoline Compression Ignition Engine

2019-04-02
2019-01-0240
A detailed study of various air system configurations has been conducted for a prototype gasoline compression ignition (GCI) engine using a Cummins MY2013 ISX15 heavy-duty diesel engine as the base platform. The study evaluated the configurations with the assumption that RON80 gasoline would be used as the fuel and the combustion chamber would have a geometric compression ratio (CR) of 16.5. Using 3-D computational fluid dynamics (CFD) simulations, a high efficiency & low engine-out NOx GCI combustion recipe was developed across the five engine operating points from the heavy-duty Supplemental Emissions Test (SET) cycle: A100, B25, B50, B75, and C100. The CFD generated air-thermal boundary conditions and the combustion burn-rate & injector rate-of-injection profiles were imported into a calibrated 1-D engine model for the air-handling systems analysis.
Technical Paper

Standardized Gasoline Compression Ignition Fuels Matrix

2018-04-03
2018-01-0925
Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new.
Technical Paper

Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

2018-04-03
2018-01-0191
Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Medium Load-Conditions

2021-04-06
2021-01-0460
Gasoline compression ignition (GCI) pertains to high efficiency lean burn compression ignition with gasoline fuels, where ignition is controlled by mixture’s auto-ignition chemistry as well as local mixture strength. The presented GCI combustion strategy is based on a multi-mode combustion strategy at various operating conditions. This study presents a part of work on the development of an optimum combustion strategy at medium loading condition for commercial gasoline fuel with research octane number (RON) = 91. The single cylinder engine with a compression ratio (CR) = 16 features a centrally mounted multi-hole injector with a spark plug at a distance from the injector under shallow pent-roof combustion chamber design. The design of combustion chamber and piston was previously optimized based on CFD numerical analysis.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Low Load Condition Using CFD

2021-04-06
2021-01-0440
The effects of intake pressure (Pin), start of injection (SOI), injection pressure (Pinj), injection split ratio (Qsplit), internal and external exhaust gas recirculation rates were varied to optimize several key parameters at a partially pre-mixed combustion low load/low speed condition using CFD. These include indicated specific fuel consumption (ISFC), combustion phasing (CA50), maximum rate of pressure rise (MRPR), maximum cylinder pressure (Pmax), indicated specific NOx (sNOx), indicated specific hydrocarbons (sHC) and Filter Smoke Number (FSN) emissions. Low-load point (6 bar indicated mean effective pressure (IMEP), 1500 revolutions per minute (RPM)) was selected where Pin varied between 1.25 and 1.5 bar, SOI between -100 and -10 crank angle degree (CAD) after top dead center (aTDC), Pinj between 100 and 200 bar, split ratio between 0 and 0.5, EGR between 0 and 45% and internal EGR measured by rebreathing valve height was varied between 0 and 4.5 mm.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Technical Paper

Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0778
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
Technical Paper

Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0190
The combustion system of a heavy-duty diesel engine operated in a gasoline compression ignition mode was optimized using a CFD-based response surface methodology and a machine learning genetic algorithm. One common dataset obtained from a CFD design of experiment campaign was used to construct response surfaces and train machine learning models. 128 designs were included in the campaign and were evaluated across three engine load conditions using the CONVERGE CFD solver. The design variables included piston bowl geometry, injector specifications, and swirl ratio, and the objective variables were fuel consumption, criteria emissions, and mechanical design constraints. In this study, the two approaches were extensively investigated and applied to a common dataset. The response surface-based approach utilized a combination of three modeling techniques to construct response surfaces to enhance the performance of predictions.
Technical Paper

Large Eddy Simulation of a Reacting Spray Flame under Diesel Engine Conditions

2015-09-01
2015-01-1844
Reynolds-averaged Navier-Stokes (RANS) turbulence model has been used extensively for diesel engine simulations due to its computational efficiency and is expected to remain the workhorse computational fluid dynamics (CFD) tool for industry in the near future. Alternatively, large eddy simulations (LES) can potentially deal with complex flows and cover a large disparity of turbulence length scales, which makes this technique more and more attractive in the engine community. An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a dynamic structure LES model to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was closed using a delta probability density function (PDF) combustion model. A 103-species skeletal mechanism was used for n-dodecane chemical kinetic model.
Technical Paper

Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation with Multiple Targets on an IBM Blue Gene/Q Supercomputer

2016-04-05
2016-01-0602
In internal combustion engine computational fluid dynamics (CFD) simulations, uncertainties arise from various sources, such as estimates of model parameters, experimental boundary conditions, estimates of chemical kinetic rates, etc. These uncertainties propagate through the model and may result in discrepancies compared to experimental measurements. The relative importance of the various sources of uncertainty can be quantified by performing a sensitivity analysis. In this work, global sensitivity analysis (GSA) was applied to engine CFD simulations of a low-temperature combustion concept called gasoline compression ignition, to understand the influence of experimental measurement uncertainties from various sources on specific targets of interest-spray penetration, ignition timing, combustion phasing, combustion duration, and emissions. The sensitivity of these targets was evaluated with respect to imposed uncertainties in experimental boundary conditions and fuel properties.
Technical Paper

Global Sensitivity Analysis of a Diesel Engine Simulation with Multi-Target Functions

2014-04-01
2014-01-1117
Global Sensitivity Analysis (GSA) is conducted for a diesel engine simulation to understand the sensitivities of various modeling constants and boundary conditions in a global manner with regards to multi-target functions such as liquid length, ignition delays, combustion phasing, and emissions. The traditional local sensitivity analysis approach, which involves sequential perturbation of model constants, does not provide a complete picture since all the parameters can be uncertain. However, this approach has been studied extensively and is advantageous from a computational point of view. The GSA simultaneously incorporates the uncertainty information for all the relevant boundary conditions, modeling constants, and other simulation parameters. A global analysis is particularly useful to address the important parameters in a model where the response of the targets to the values of the variables is highly non-linear.
Technical Paper

Exploration of Cavitation-Suppressing Orifice Designs for a Heavy-Duty Diesel Injector Operating with Straight-Run Gasoline

2019-09-09
2019-24-0126
The occurrence of cavitation inside injectors is generally undesirable since it can cause material erosion and result in deviations from the expected injector performance. Previous numerical work employing an injector geometry measured with x-ray diagnostics and operating with a high-volatility straight-run gasoline (SRG) has shown that: (1) most of the cavitation is generally observed at low needle lifts, (2) needle motion is responsible for asymmetric structures in the internal flow as well as large pressure and velocity gradients that trigger phase transition at the orifice inlets, and (3) cavitation affects the injector discharge coefficient and distribution of injected fuel. To explore the potential for material damage within the injector orifices due to cavitation cloud collapse, the cavitation-induced erosion risk assessment (CIERA) tool has been applied for the first time to the realistic geometry of a heavy-duty injector using the CONVERGE software.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Technical Paper

Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

2016-04-05
2016-01-0762
Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations.
Technical Paper

Effect of Fuel Temperature on the Performance of a Heavy-Duty Diesel Injector Operating with Gasoline

2021-04-06
2021-01-0547
In this last decade, non-destructive X-ray measurement techniques have provided unique insights into the internal surface and flow characteristics of automotive injectors. This has in turn contributed to enhancing the accuracy of Computational Fluid Dynamics (CFD) models of these critical injection system components. By employing realistic injector geometries in CFD simulations, designers and modelers have identified ways to modify the injectors’ design to improve their performance. In recent work, the authors investigated the occurrence of cavitation in a heavy-duty multi-hole diesel injector operating with a high-volatility gasoline-like fuel for gasoline compression ignition applications. They proposed a comprehensive numerical study in which the original diesel injector design would be modified with the goal of suppressing the in-nozzle cavitation that occurs when gasoline fuels are used.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Technical Paper

Development of a Reduced TPRF-E (Heptane/Isooctane/Toluene/Ethanol) Gasoline Surrogate Model for Computational Fluid Dynamic Applications in Engine Combustion and Sprays

2022-03-29
2022-01-0407
Investigating combustion characteristics of oxygenated gasoline and gasoline blended ethanol is a subject of recent interest. The non-linearity in the interaction of fuel components in the oxygenated gasoline can be studied by developing chemical kinetics of relevant surrogate of fewer components. This work proposes a new reduced four-component (isooctane, heptane, toluene, and ethanol) oxygenated gasoline surrogate mechanism consisting of 67 species and 325 reactions, applicable for dynamic CFD applications in engine combustion and sprays. The model introduces the addition of eight C1-C3 species into the previous model (Li et al; 2019) followed by extensive tuning of reaction rate constants of C7 - C8 chemistry. The current mechanism delivers excellent prediction capabilities in comprehensive combustion applications with an improved performance in lean conditions.
Technical Paper

Computing Statistical Averages from Large Eddy Simulation of Spray Flames

2016-04-05
2016-01-0585
The primary strength of large eddy simulation (LES) is in directly resolving the instantaneous large-scale flow features which can then be used to study critical flame properties such as ignition, extinction, flame propagation and lift-off. However, validation of the LES results with experimental or direct numerical simulation (DNS) datasets requires the determination of statistically-averaged quantities. This is typically done by performing multiple realizations of LES and performing a statistical averaging among this sample. In this study, LES of n-dodecane spray flame is performed using a well-mixed turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. The computational cost of each calculation was in the order of 3 weeks on 200 processors with a peak cell count of about 22 million at 1 ms.
Technical Paper

Comparison of In-Nozzle Flow Characteristics of Naphtha and N-Dodecane Fuels

2017-03-28
2017-01-0853
It is well known that in-nozzle flow behavior can significantly influence the near-nozzle spray formation and mixing that in turn affect engine performance and emissions. This in-nozzle flow behavior can, in turn, be significantly influenced by fuel properties. The goal of this study is to characterize the behavior of two different fuels, namely, a straight-run naphtha that has an anti-knock index of 58 (denoted as “Full-Range Naphtha”) and n-dodecane, in a simulated multi-hole common-rail diesel fuel injector. Simulations were carried out using a fully compressible multi-phase flow representation based on the mixture model assumption with the Volume of Fluid method. Our previous studies have shown that the characteristics of internal and near-nozzle flow are strongly related to needle motion in both the along- and off-axis directions.
X