Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 14920
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Technical Paper

“The Network Vehicle - A Glimpse into the Future of Mobile Multi-Media”

1998-11-09
982901
The Network Vehicle is the Delphi Automotive Systems' vision for the future convergence of the communications infrastructure, computers, and the automobile. It features many advanced functions such as: satellite video, Internet access, virtual navigation, remote vehicle diagnostics and control, games, mobile office, automotive web site, and customized real-time stock quotes and sports scores. These features are enabled by an integrated planar antenna that is capable of multiple satellite reception, a client-server network architecture, and unique human-vehicle-interfaces. The software application is written in Java, using API's (Application Programming Interfaces) to reduce the complexity and cost of the source code.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“Standardizing the Datasheet” Towards Auto-Code Generation Efficiency

2009-04-20
2009-01-0270
Software programs in non-application areas such as Board Support Packages, Hardware Abstraction Layers, signal processing and data acquisition are more or less very standard and common across many applications. These form a major part of the “platform” software, which changes very little. However, it is seen that many a time, efforts are spent resolving issues in the hardware dependent layers rather than concentrating on the application at hand, despite the fact that the software controlling the hardware has been developed many times. There are many reasons why this section of the software is rewritten many times over: different coding standards, different software architecture and layering concepts, the dreadful cut-and-paste methods, and so on. Introduction of a tool-based code configurator and generator eliminates access to the code and focuses on configuring a pre-written set of SW procedures. Advantages: Standardization, reuse and high levels of productivity.
Technical Paper

“Rigidization-on-Command”™ (ROC) Resin Development for Lightweight Isogrid Booms with MLI

2003-07-07
2003-01-2342
The “Rigidization-on-Command”™ (ROC™) resin development has focused on the development of resin systems that use UV light cure for rigidization. Polymeric sensitizers have been incorporated into the resin formulations to promote cure using Pen-Ray lamps and UV light-emitting diodes (LED's). Formulations containing the polymeric sensitizers were examined by FTIR and DSC. Complete cure was observed after 15 min. exposure with the Pen-Ray lamps. Performance of the Pen-Ray lamps and UV LEDs was thoroughly characterized. Thermal models were developed to optimize the performance of the of the MLI insulation thermal oven used for orbital cure of the boom. Results show that -12°C is the lowest temperature required for cure of the ROC™ resin systems.
Technical Paper

“Optimization” of Lower Deck Cargo Systems

1988-05-01
880973
The ability to carry cargo efficiently in passenger aircraft has influenced airline economics to the point that optimisation of the freight capacity is mandatory. This document discusses the alternative loading possibilities in defined Lover Deck Compartments and their doors to cater for current and future trends in ULD dimensions. As a result items for study centred on: 1) Optimisation of the available volumes Freight capacity resulting in the selection of “Pallets”-doors for both the Forward and AFT Compartments. Flexibility to meet Freight and Baggage requirements. Possible load arrangements to optimize aircraft C of G 2) Bulk Cargo Compartment Additional LD3 Container position in AFT/Bulk compartment to cater for an uneven number of Baggage container, allowing the carriage of an additional pallet. What is regarded as an optimum is presented.
Technical Paper

“Model Based Predictive Control of MELISSA Photobioreactors. Steady State Determination”

1994-06-01
941411
Mathematical modeling and control of artificial ecosystems, such as MELISSA, require first the study of physical and biological characteristics in optimal and limiting conditions. Following the previous determination of the stoichiometric equations (Spirulina compartment) and regarding the two phototrophic compartments of MELISSA (Rhodospirillaceae and Spirulina), we have first to focus our control study on the growth kinetics for the light source. In this paper, we recall the theoretical equations of microbial growth kinetics and emphasise the problem of the light transfer in a photobioreactor. We present their adaptations to our pilot plant taking into account technological and biological specifics (lamp spectrum, working illuminated volume, growth rate,…). We then develop the principles and structure of the control system and describe tests of both the hardware and software for several steady state configurations.
Technical Paper

“Meta-modeling”, Optimization and Robust Engineering of Automotive Systems Using Design of Experiments

2001-03-05
2001-01-3848
This paper describes the application of statistical techniques known as Design of Experiments (D.O.E.) to efficiently use the results of numerical analysis data in order to improve the configuration of automotive systems. The general framework of these techniques is presented in a format aiming at the design engineer as their end user. Besides, a case study is presented with the purpose of illustrating their practical use. The first step of the case study is to build predictive models for the behaviour of the automotive system being developed by means of the Response Surface Method (RSM), using the proper D.O.E. options. Once these predictive models are available, automatic numerical optimization algorithms are used to improve the responses of interest for given operating conditions. Finally, the automotive systems are robust designed taking into account that the operating conditions vary randomly.
Technical Paper

“Impact of Design Principles on End-of-Life and Recycling”

2024-01-16
2024-26-0163
Automotive industry is a major contributor to global carbon dioxide (CO2) emissions and waste generation. Not only do vehicles produce emissions during usage, but they also generate emissions during production phase and end of life disposal. There is an urgent need to address sustainability and circularity issues in this sector. This paper explores how circularity and CO2 reduction principles can be applied to design and production of automotive parts, with the aim of reducing the environmental impact of these components throughout their life cycle. Also, this paper highlights the impact of design principles on End-of-Life Management of vehicles. As Design decisions of Component impacts up to 80% of emissions [1], it is important to focus on this phase for major contribution in reduction of emissions.
Technical Paper

“Fitting Data”: A Case Study on Effective Driver Distraction State Classification

2019-04-02
2019-01-0875
The goal of this project was to investigate how to make driver distraction state classification more efficient by applying selected machine learning techniques to existing datasets. The data set used in this project included both overt driver behavior measures (e.g., lane keeping and headway measures) and indices of internal cognitive processes (e.g., driver situation awareness responses) collected under four distraction conditions, including no-distraction, visual-manual distraction only, cognitive distraction only, and dual distraction conditions. The baseline classification method that we employed was a support vector machine (SVM) to first identify driver states of visual-manual distraction and then to identify any cognitive-related distraction among the visual-manual distraction cases and other non-visual manual distraction cases.
Technical Paper

“Fair” Comparison of Powertrain Configurations for Plug-In Hybrid Operation Using Global Optimization

2009-04-20
2009-01-1334
Plug-in Hybrid Electric Vehicles (PHEVs) use electric energy from the grid rather than fuel energy for most short trips, therefore drastically reducing fuel consumption. Different configurations can be used for PHEVs. In this study, the parallel pre-transmission, series, and power-split configurations were compared by using global optimization. The latter allows a fair comparison among different powertrains. Each vehicle was operated optimally to ensure that the results would not be biased by non-optimally tuned or designed controllers. All vehicles were sized to have a similar all-electric range (AER), performance, and towing capacity. Several driving cycles and distances were used. The advantages of each powertrain are discussed.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

“Bump Test” of Wet Friction Materials: Modeling and Experiments

2001-03-05
2001-01-1154
In one of the fatigue tests for wet friction materials, “bump test”, an inertia-type rig equipped with a multi-disk assembly is used. One of the steel disks in the assembly has radial bumps for the purpose of creating high local contact pressure and high temperature. Due to the severe contact conditions, a comparative testing for different friction materials can be conducted within a relatively small number of cycles. In the paper, a design of a “bump” assembly used for automotive wet friction materials is described. Based on both experimental tests and advanced contact modeling, non-uniform contact pressure generated by the bumps and resulting temperature are estimated. The computational model is used then to study the influence of the modulus of elasticity of the friction material and reaction plate thickness on the contact conditions. The bump fatigue tests lead ultimately to material failure.
Technical Paper

“Aluminium Hot Forming: - Opportunities and Challenges in Automotive Light Weighting”

2023-05-25
2023-28-1304
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming.
Technical Paper

‘Emotional Controlling’ of Digital Human Models - A New Way to Digital Autonomy?

2008-06-17
2008-01-1873
‘Emotional controlling’ is a very efficient way to realize autonomous behaviour of digital human models by closed loop controls. In particular this is an emotional optimization procedure based upon the ‘Hedonic principle’ and thus following closely the human original. Emotional controlling will be outlined and illustrated by an example demonstrating the specific way force and posture induced discomfort is shaping our movements.
Technical Paper

‘Bigelow Aerospace® Life Support Laboratory - Planning and Status’

2004-07-19
2004-01-2474
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
Technical Paper

some thoughts on optimum combinations of Wings and Vertical Thrust Generators in VTOL Aircraft

1959-01-01
590040
THIS PAPER reviews VTOL problems, indicating probable ways toward optimization of whole lifting and propelling system. Also discussed are the power and thrust requirements for optimum cruise and vertical take-offs and landings for propeller-driven and jet-propelled aircraft. Three speed ranges offer the most promise for VTOL aircraft, if thrust requirements for cruise and take-off are to match. The ranges are centered around Mach numbers of 0.65, 0.8, and 2.0+. There is a possibility of overcoming the high thrust needed for hovering by use of bypass augmentation, special hovering jets, or favorable ground effects, the author reports.
Technical Paper

modeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers

2014-09-30
2014-01-2406
The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
Technical Paper

Zinc on the Move: Advancements in Coatings and Castings Keep the Metal Competitive

1986-02-01
860611
For over a decade, industry prognosticators have been predicting that the use of plastics by automakers would soon surpass the deployment of metals in automobiles, While there is no denying that plastics have made inroads, it recently has become apparent that metal will retain its position as the prime car material for the foreseeable future. One reason for the revised forecast is the development of improved zinc coatings for the automotive industry. Such material as electrogalvanized and Galfan™ are shaping up as steel's saviors when it comes to ensuring that metal will continue to play the major role on car assembly lines. Meanwhile on the other side of the equation, developments in zinc die casting technology have taken the edge off plastics' forward thrust into both functional and decorative car part applications.
X