Refine Your Search

Topic

Search Results

Technical Paper

Visualization of Micro Structure in a Diesel Spray by Use of Photography with High Spatial Resolution

2008-10-06
2008-01-2465
It is very much necessary for researchers and engineers whose work is the field of combustion in a CI engine to find the information of droplets in a diesel spray. The information is strongly required to construct the model of spray built in the numerical code for its simulation and to be used for the verification of the accuracy of the calculation. This paper describes the photographing system with high spatial resolution, the distribution of droplet size and the vortex scale caused by the droplets motion by means of this system.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

The structure analysis of diesel free spray with phase change~(Effect of viscosity change of vapor-phase fuel on the structure of diesel free spray)

2000-06-12
2000-05-0100
In this study, the purpose is placed in analysis the structure of diesel spray and, especially, making clear the mixture formation process in the evaporative diesel spray. The liquid fuel was injected from a single-hole nozzle (1/d = 1.0 mm/0.2 mm) into a constant-volume vessel possessing phenomena visualization under high pressure and temperature field. As for measurement method, in order to investigate liquid and vapor-phase of injected spray, exciplex fluorescence method was applied in the evaporative fuel spray. And the interested view region in injected spray is the downstream spray. For the minute investigation of spray flow, the liquid and vapor-phase region is taken with 35 mm still camera and CCD camera, respectively.
Technical Paper

The Effect of Fuel-Vapor Concentration on the Process of Initial Combustion and Soot Formation in a DI Diesel Engine Using LII and LIEF

2001-03-05
2001-01-1255
A phenomenological or empirical model based on experimental results obtained from various optical measurements is critical for the understanding of DI diesel combustion phenomena as well as for the improvement of its emission characteristics. Such a model could be realized by the application of advanced optical measurement, which is able to isolate a particular phenomenon amongst complicated physical and chemical interactions, to a DI diesel combustion field. The authors have conducted experimental studies to clarify the combustion characteristics of unsteady turbulent diffusion flames in relation to the soot formation and oxidation process in a small-sized DI diesel engine. In the present study, the effect of fuel vapor concentration on the process of early combustion and soot formation has been investigated using several optical measurements.
Technical Paper

Spray and Combustion Characteristics of Reformulated Biodiesel with Mixing of Lower Boiling Point Fuel

2007-04-16
2007-01-0621
Authors propose the reformulation technique of physical properties of Biodiesel Fuel (BDF) by mixing lower boiling point fuels. In this study, waste cooking oil methyl ester (B100), which have been produced in Kyoto city, is used in behalf of BDF. N-Heptane (C7H16) and n-Dodecane (C12H26) are used as low and medium boiling point fuel. Mixed fuel of BDF with lower boiling point fuels have lighter quality as compared with neat BDF. This result is based on the chemical-thermo dynamical liquid-vapor equilibrium theory. This paper describes fundamental spray and combustion characteristics of mixed fuel of B100 with lower boiling point fuels as well as the reformulation technique. By mixing lower boiling point fuel, lighter quality fuels can be refined. Thus, mixed fuels have higher volatility and lower viscosity. Therefore, vaporization of mixed fuel spray is promoted and liquid phase penetration of mixed fuel shortens as compared with that of neat BDF.
Technical Paper

Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels

2003-05-19
2003-01-1789
This paper provides new insights on the mechanism of the smokeless diesel combustion with oxygenated fuels, based on a combination of soot kinetic modeling and optical diagnostics. The chemical effects of fuel compositions, including aromatics - paraffins blend, neat oxygenated fuels and oxygenate additives, on sooting equivalence ratio ‘ϕ’ - temperature ‘T’ dependence were numerically examined using a detailed soot kinetic model. To better understand the physical factors affecting soot formation in oxygenated fuel sprays, the effects of injection pressure and ambient gas temperature on the flame lift-off length and relative soot concentration in oxygenated fuel jets were experimentally investigated. The computational results show that the leaner mixture side of soot formation peninsula on the ϕ - T map, rather than the lower temperature one, should be utilized to suppress the formation of PAHs and ultra-fine particles together with the large reduction in particulate mass.
Technical Paper

Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method

1997-02-24
970796
An unsteady single spray of n-tridecane which was mixed with a small quantity of exciplex - forming dopants, that is naphthalene and TMPD, was impinged on a flat wall surface with high temperature of 550 K at a normal angle. These experiments were carried out in a quiescent N2 atmosphere with high temperature of 700 K and high pressure of 2.5 MPa. It was possible to generate the fluorescence emissions from the vapor and liquid phases in this spray, when a laser light sheet from a Nd:YAG laser was passing through the cross section of the spray containing its central axis. Then, clear 2 - D images of vapor and liquid phases in the spray were acquired simultaneously by this method. And, the vapor concentration was analyzed quantitatively by applying Lambert - Beer's law to the measured TMPD monomer fluorescence intensity from vapor phase, and by correcting the intensity for the effect of the quenching process due to the ambient temperature and fuel concentration.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

OH Radical Generation and Soot Formation/Oxidation in DI Diesel Engine

1998-10-19
982630
OH radical generated in a DI diesel engine has a close relationship to soot oxidation. To clarify this fact, the distribution of the natural emission of OH radical was captured by means of an interference filter system and that of soot was detected by the simultaneous application of a laser induced incandescence (LB) and a laser induced scattering (LIS). The experiments were carried out in a small sized high-speed DI diesel engine installed with an optical access view. The generation of OH radical and the formation/oxidation of soot are discussed by using both images.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

Multicomponent Fuel Consideration for Spray Evaporation Field and Spray-Wall Interaction

2001-03-05
2001-01-1071
It is expected that the analysis of the evaporation process for multicomponent fuels such as actual fuels like gasoline and diesel gas oil could be performed to assess more accurately the mixture preparation field inside the cylinder of D.I.S.I engines and diesel engines. In this paper, we suggested the importance of this multicomponent fuel consideration relating to the mixture formation and combustion characteristics from the basis of their own fuel physical and chemical properties. Then, we introduce a treatment for the phase change of a multicomponent solution through the formation of two-phase regions with the basis of chemical-thermodymical liquid-vapor equilibrium. Next, we analyze the distillation properties of a multicomponent fuel as well as the evaporation process of a multicomponent single droplet by use of the chemical-thermodymical analysis.
Technical Paper

Modeling of Diesel Spray Impingement on a Flat Wall

1994-10-01
941894
This paper presents an analysis using a model of the dispersion process of a Diesel spray impinging on a flat wall. The objective is to simulate the spray / wall interaction process inside Diesel engines. This analysis has two parts: one for non - evaporative spray and the other for evaporative spray. For the non - evaporative spray analysis, a single spray of n - tridecane was injected at high - pressure from a single hole nozzle into a quiescent atmosphere at room - temperature. The spray impinged vertically on the wall at room temperature. Thus, the wall temperature Tw was less than the saturation temperature Tsat of the fuel, that is the boiling temperature. A new submodel including fuel film formation on the wall, its breakup process due to droplet impingement and the dispersion process of breakup - droplets was developed. Also, the droplet density distribution was measured experimentally by the laser light extinction method.
Technical Paper

Modeling and Measurement on Evaporation Process of Multicomponent Fuels

2000-03-06
2000-01-0280
In previous multi-dimensional modeling on spray dynamics and vapor formation, single component fuel with pure substance has been analyzed to assess the mixture formation. Then it should be expected that the evaporation process could be performed for the multicomponent fuel such as actual Gasoline and Diesel gas oil. In this study, vapor-liquid equilibrium prediction was conducted for multicomponent fuels such as 3 and 10 components mixed solution with ideal solution analysis and non-ideal solution analysis. And the computation of distillation characteristics was conducted for the steady state fuel condition fuel condition to understand the evaporation process. As a result, calculated distillation characteristics are consistent well with experiment results. And the evaporation process of a multicomponent droplet in the combustion chamber has been calculated with the variation of ambient pressure and temperature.
Technical Paper

Mechanism of Combined Combustion of Premixed Gas and Droplets

2002-10-21
2002-01-2843
In an SI engine with direct injection of gasoline (DGI), many small droplets disperse in premixed gas in the cylinder. In a CI engine, diesel spray is injected a cylinder, thus, the situation at the spray periphery is almost the same as that of DGI SI engine. From the standpoint it is useful for understanding the combustion phenomena in both engines to experiment the combined combustion of premixed gas where many small droplets exist. This paper describes this kind of combustion and it seems to be able to apply the results to the simulation of combustion in these engines.
Technical Paper

Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine

1999-03-01
1999-01-0798
In SI engines with port injection system, the injected fuel spray adheres surely on the port wall and the inlet valve, consequently, the spray-wall interaction process leads to the generation of unburned hydrocarbons and uncontrollable mixture formation. This paper deals with the fuel mixture preparation process including basic research on characteristics of the wall-wetted fuel film on a flat wall inside a constant volume vessel. In the experiments, iso-octane mixed with biacetyl as a tracer dopant was injected through a pintle type injector against a flat glass wall under the ambient conditions of atmospheric pressure and room temperature. The thickness of the adhered fuel film on the wall was quantitatively measured by using laser induced fluorescence (LIF) technique, which provides 2-D distribution information with high special resolution as a function of the injection duration, the impingement distance from the injector to the wall, and the impingement angle against the wall.
Technical Paper

Large Eddy Simulation of Non-Evaporative and Evaporative Diesel Spray in Constant Volume Vessel by Use of KIVALES

2006-10-16
2006-01-3334
Large Eddy Simulation (LES) is applied to non-evaporative and evaporative diesel spray simulations. KIVALES, which is LES version of KIVA code, is used as the LES computational code. Modified TAB model is used as breakup model, and interpolated donor cell differencing scheme is employed to calculate convective terms. To validity LES simulation, LES results using KIVALES are compared with experimental results and simulated results with conventional RANS approach using KIVA3V res.2. The results show that the LES simulation of non-evaporative spray depends on the grid size in comparison with RANS simulation, and good agreement is obtained between experimental results and the LES results with fine grid (720,000 cells). Furthermore, asymmetric non-evaporative spray which has intermittency at the outer edge of sprays is simulated, since instantaneous turbulent flow field can be predicted directly in LES case.
Technical Paper

Knocking Phenomena in a Rapid Compression and Expansion Machine

1992-02-01
920064
In this study, a rapid compression and expansion machine(RCEM) with a pancake combustion chamber was designed to investigate fundamentally on the knocking phenomena in spark ignition(S.I) engines. This RCEM is intended to simulate combustion in an actual engine. The homogeneous pre-mixture of n-pentane and air was charged into a quiescent atmosphere of the chamber. Then, the combustion field become simpler in this machine than it in a real S.I. engine. Also, the combustion phenomena, that is a cylinder pressure history, the behavior of flame propagation and so on, with high reproducibility are realized in this machine. The phenomena caught in this experiment were so-called low speed knocking. And, this knocking characteristics such as a knock intensity and a knock mass fraction were revealed by the cylinder pressure analysis varying the charge pressure and the equivalence ratio of the mixture, a compression ratio and an ignition timing.
Technical Paper

Investigation on the Initial Part and the Spray Formation Delay of Diesel Spray

1983-02-01
830451
As authors reported in SAE Trans. 800968, entitled “Investigation on the Characteristics of Diesel Fuel Spray”, the flame never proceeds into the initial-part of the spray during injection. The length of the initial part-lies within 10 to 15 mm regardless of the conditions of the injection systems and of the ambient conditions. The ignition delay does not decrease but becomes constant when the ambient temperature or the pressure exceed a discrete value. The authors would like to propose a new concept of “Spray Formation Delay” during which the field is generated where the physical and chemical delay can exist. The spray formation delay is one of the major factors which control the above mentioned limitation of ignition delay. The characteristics of the spray formation delay are investigated and clarified.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine

2003-03-03
2003-01-1038
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In this fuel design concept, the mixed fuels with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components) are used in order to improve the spray characteristics by flash boiling. In our previous papers on this study, the fundamental characteristics of spray and its combustion of mixed fuel were reported. In this paper, heat release and exhaust emission (smoke, NOx and THC) characteristics of single cylinder diesel engine operated with the mixed fuels were investigated under each load. The exhaust performance of diesel engine could be improved using mixed fuel, because fuel properties and spray characteristics were controlled by changing mixing fraction of the mixed fuel.
Technical Paper

Flow Characteristics in Transient Gas Jet

1995-02-01
950847
The combustion of a diesel spray includes very complex processes, that is, atomization, evaporation, diffusion, turbulent mixing and burning. On the other hand, there are no phenomena of atomization and evaporation in the combustion of a transient gas jet. However, the latter jet can be treated as a fundamental of the former spray. From the standpoint mentioned above, acetylene gas was injected into the ambient during short duration as a transient gas jet and its flow characteristics were investigated by means of photography with a sheet of laser light and LDV to detect the turbulent vortex generated in the boundary layer between it and surroundings, in the experiments presented here. And the experimental results show that the jet itself is divided into four peculiar regions and the modelling of each region is carried out by use of the results to understand the mixture formation process owing to the turbulent diffusive mixing.
X