Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Transient Evaluation of Two-Stage Turbocharger Configurations using Model Predictive Control

2015-09-01
2015-01-1980
There is a trend towards increasing the degree of engine downsizing due to its potential for reducing fuel consumption and hence lowering CO2 emissions. However, downsizing introduces significant challenges for the engine airpath hardware and control, if driveability is to be maintained at an acceptable level. The transient response of the engine is affected by both the hardware selection and the associated controller. In order to understand the potential performance and limitations of the possible airpath hardware, a mean value model of the engine under consideration can be utilized. One benefit of these models is that they can be used as the basis of a model predictive controller which gives close to optimal performance with minimal tuning effort. In this paper we examine different two-stage series sequential turbocharger arrangements.
Technical Paper

Time Resolved Measurement of Cold Start HC Concentration Using the Fast FID

1996-10-01
961926
Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID).
Technical Paper

Throttle Movement Rate Effects on Transient Fuel Compensation in a Port-Fuel-Injected SI Engine

2000-06-19
2000-01-1937
Throttle ramp rate effects on the in-cylinder fuel/air (F/A) excursion was studied in a production engine. The fuel delivered to the cylinder per cycle was measured in-cylinder by a Fast Response Flame Ionization detector. Intake pressure was ramped from 0.4 to 0.9 bar. Under slow ramp rates (∼1 s ramp time), the Engine Electronic Control (EEC) unit provided the correct compensation for delivering a stoichiometric mixture to the cylinder throughout the transient. At fast ramp rates (a fraction of a second ramps), a lean spike followed by a rich one were observed. Based on the actual fuel injected in each cycle during the transient, a x-τ model using a single set of x and τ values reproduced the cycle-to-cycle in-cylinder F/A response for all the throttle ramp rates.
Technical Paper

The Fast FID as a Velocimeter for Flow Measurements in an Automotive Catalyst

1998-02-01
980879
The gas velocity through an automotive catalyst has been determined by measuring the time of flight of a pulse of propane injected at the inlet plane of the catalyst. The arrival time at the exit plane was detected by a fast flame ionization detector. By synchronizing and delaying the injection of propane with respect to the engine crankshaft position, the fluctuations of the exhaust gas velocity during the engine cycle were investigated. A number of tests at different engine load and speed points were carried out. The results show a complex velocity/time characteristic, including flow reversals. The technique is shown to be a viable option for flow measurement in this harsh environment.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

The Dynamic Effect of Residual Gas Temperature on Combustion Torque at Idle

2001-09-24
2001-01-3558
The amount of residual gas present in the cylinder has a well documented effect on the combustion event at idle. The high levels of burnt gas present at low engine speed leads to significant cyclic variability. This paper presents research which indicates that the temperature of the residual gas, which can vary from event to event depending on the spark timing, also has a significant effect on the combustion torque. The more the spark timing is retarded from MBT timing, the more thermal energy is present in the exhaust gas. The idle speed control strategy typically varies the spark to give fast torque actuation for good speed regulation and hence the temperature of the residual gas may change significantly within the space of a few events. The paper shows evidence of the phenomenon (with fixed engine speed and air mass flow) and discusses possible causes. It then proceeds to develop a dynamic model for the behaviour.
Technical Paper

Spark Ignition Engine Hydrocarbon Emissions Behaviors in Stopping and Restarting

2002-10-21
2002-01-2804
Engine Hydrocarbon (HC) emissions behaviors in the shut down and re-start processes were examined in a production 4-cylinder 2.4 L engine. Depending on when the power to the ECU was cut off relative to the engine events, there could be two or three mis-fired cylinders (i.e. cylinders with fuel injected but no ignition). The total HC pumped out by the engine into the catalyst in the stopping process was ∼ 4 mg (approximately equaled to the amount of one injection at idle condition). Because the size of the catalyst was larger than the total exhaust volume in the stopping process, this HC was not observed at the catalyst exit. The catalyst temperature was also not affected. When the engine was purged after shut down (by cranking the engine with the injectors and ignition disconnected), the total exit HC was 33 mg. In a restart 90 minutes after shut down, the integrated amount of HC emissions due to residual fuel from the stopping process was 16 mg.
Technical Paper

Simultaneous Piston Ring Friction and Oil Film Thickness Measurements in a Reciprocating Test Rig

1995-10-01
952470
A reciprocating test apparatus was constructed in which the friction of a single piston ring against a liner segment was measured. The lubrication oil film thickness was also measured simultaneously at the mid stroke of the ring travel using a laser fluorescence technique. The apparatus development and operation are described. Results are presented from a test matrix consisting of five different lubrication oils of viscosity (at 30°C) ranging from 49 to 357 cP; at three mean piston speeds of 0.45, 0.89 and 1.34 m/s; and at three ring normal loading of 1.4, 2.9 and 5.7 MPa. At mid stroke, the oil film thickness under the ring was ∼0.5 to 4 μm; the frictional coefficient was ∼0.02 to 0.1. The frictional coefficient for all the lubricants tested increased with normal load, and decreased with piston velocity. Both mixed and hydrodynamic lubrication regimes were observed. The friction behaviors were consistent with the Stribeck diagram.
Technical Paper

Residual Gas Fraction Measurement and Estimation on a Homogeneous Charge Compression Ignition Engine Utilizing the Negative Valve Overlap Strategy

2006-10-16
2006-01-3276
This paper is concerned with the Residual Gas Fraction measurement and estimation on a Homogeneous Charge Compression Ignition (HCCI) engine. A novel in-cylinder gas sampling technique was employed to obtain cyclic dynamic measurements of CO2 concentration in the compression stroke and in combination with CO2 concentration measurements in the exhaust stroke, cyclic Residual Gas Fraction was measured. The measurements were compared to estimations from a physical, 4-cylinder, single-zone model of the HCCI cycle and good agreement was found in steady engine running conditions. Some form of oscillating behaviour that HCCI exhibits because of exhaust gas coupling was studied and the model was modified to simulate this behaviour.
Technical Paper

Real-Time Smoke Sensor for Diesel Engines

1986-02-01
860157
This paper describes a system for real-time smoke detection in diesel engines. Preliminary results are presented from a very simple sensor which detects the net charge level on smoke particles. There appears to be a useful correlation between the peak charge level and the Bosch smoke number. The mechanism by which the particulates is discussed, though no firm conclusions are reached.
Technical Paper

Real Time In-Cylinder and Exhaust NO Measurements in a Production SI Engine

1998-02-23
980400
A new fast response NO detector, based on the chemiluminescence (CLD) method has been used to measure continuous, real time levels of NO in the cylinder, and simultaneously in the exhaust port of a virtually unmodified production SI engine. The real time NO concentration data show a great deal of information. Simultaneous NO measurements taken in-cylinder at sample points a few millimetres apart show substantial differences. Exhaust and in-cylinder levels from the same cycle show even greater differences, though the levels on average are well correlated.
Technical Paper

Parameterization and Transient Validation of a Variable Geometry Turbocharger for Mean-Value Modeling at Low and Medium Speed-Load Points

2002-10-21
2002-01-2729
The parameterization of variable geometry turbochargers for mean-value modeling is typically based on compressor and turbine flow and efficiency maps provided by the supplier. At low turbocharger speeds, and hence low airflows, the heat exchange via the turbocharger housing affects the temperature-based measurements of the efficiencies. Therefore, the low-speed operating regime of the turbocharger is excluded from the supplied maps and mean-value models mainly rely on extrapolation into this region, which is regularly met in emission drive cycles, and hence of significance. This paper presents experimental data from a 2.0-liter turbocharged common-rail diesel engine. While the flow maps extend from the high-speed region in a natural way, the efficiency maps are severely affected by the heat transfer effect. It is argued that this effect should be included in the mean-value model.
Technical Paper

On the Time Delay in Continuous In-Cylinder Sampling From IC Engines

1989-02-01
890579
When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.
Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Technical Paper

On HCCI Engine Knock

2007-07-23
2007-01-1858
Knock in a HCCI engine was examined by comparing subjective evaluation, recorded sound radiation from the engine, and cylinder pressure. Because HCCI combustion involved simultaneous heat release in a spatially large region, substantial oscillations were often found in the pressure signal. The time development of the audible signal within a knock cycle was different from that of the pressure trace. Thus the audible signal was not the attenuated transmission of the cylinder pressure oscillation but the sound radiation from the engine structure vibration excited by the initial few cycles of pressure oscillation. A practical knock limited maximum load point for the specific 2.3 L I4 engine under test (and arguably for engines of similar size and geometry) was defined at when the maximum rate of cycle-averaged pressure rise reached 5 MPa/ms.
Technical Paper

Mixture Preparation and Hydrocarbon Emissions Behaviors in the First Cycle of SI Engine Cranking

2002-10-21
2002-01-2805
The mixture preparation and hydrocarbon (HC) emissions behaviors for a single-cylinder port-fuel-injection SI engine were examined in an engine/dynamometer set up that simulated the first cycle of cranking. The engine was motored continuously at a fixed low speed with the ignition on, and fuel was injected every 8 cycles. Unlike the real engine cranking process, the set up provided a well controlled and repeatable environment to study the cranking process. The parameters were the Engine Coolant Temperature (ECT), speed, and the fuel injection pulse width. The in-cylinder and exhaust HC were measured simultaneously with two Fast-response Flame Ionization Detectors. A large amount of injected fuel (an order of magnitude larger than the normal amount that would produce a stoichiometric mixture in a warm-up engine) was required to form a combustible mixture at low temperatures.
Journal Article

Measuring the Impact of Engine Oils and Fuels on Low-Speed Pre-Ignition in Downsized Engines

2014-04-01
2014-01-1219
One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of low speed pre-ignition (LSPI). LSPI may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, LSPI is thought to arise from local auto-ignition of areas in the cylinder which are rich in low ignition delay “contaminants” such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper describes a method for testing the propensity of different contaminants to cause a local pre-ignition in a gasoline engine. During one cycle, a small amount of contaminant is injected into one cylinder of a 4 cylinder engine.
Technical Paper

Measurement of the Unburnt Gas Temperature in an IC Engine by Means of a Pressure Transducer

2010-05-05
2010-01-1507
A novel method of measuring cylinder gas temperature in an internal combustion engine cylinder is introduced. The physical basis for the technique is that the flow rate through an orifice is a function of the temperature of the gas flowing through the orifice. Using a pressure transducer in the cylinder, and another in a chamber connected to the cylinder via an orifice, it is shown how the cylinder temperature can be determined with useful sensitivity. In this paper the governing equations are derived, which show that the heat transfer characteristics of the chamber are critical to the performance of the system, and that isothermal or adiabatic conditions give the optimum performance. For a typical internal combustion engine, it is found that the pre-compression cylinder temperature is related to the chamber pressure late in the compression process with sensitivity of the order of 0.005 bar/K.
Technical Paper

Managing SI/HCCI Dual-Mode Engine Operation

2005-04-11
2005-01-0162
Gasoline HCCI engine has the potential of providing better fuel economy and emissions characteristics than the current SI engines. However, management of HCCI operation for a vehicle is a challenging task. In this paper, the issues of mode transitions between the Spark Ignition and HCCI regimes, and the dynamic nature of the load trajectory within the HCCI regime are considered. Then the phenomena encountered in these operations are illustrated by the data from a single-cylinder engine with electromagnetic-variable-valve timing control. Mode transitions from the SI to HCCI regime may be categorized as robust and non-robust. In a robust transition, every intended HCCI cycle is successful. In a non-robust transition, one or more intended HCCI cycles misfire, although the cycles progress to a satisfactory HCCI operating point in steady state. (The spark ignition was kept on so that the engine could recover from a misfired cycle.)
X