Refine Your Search

Search Results

Technical Paper

Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine - SP-715

1987-02-01
870454
Flame fronts were examined in a premixed-charge, spark-ignition, ported engine using a two-dimensional visualization technique with 10 nanoseconds time resolution and 200 microns best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300 to 3000 rpm with stoichiometric and lean propane/air mixtures. The measurements were made far from, and near to, the cylinder wall. A pulsed laser sheet was passed through the engine and the light scattered by sub-micron TiO2 or ZrO2 seeding particles was collected by a 100 x 100 diode array with fields of view of 1 cm x 1 cm, 2 cm x 2 cm, and 9 cm x 9 cm. The thickness of the flame front is as small as, or smaller than, the 200 micron best resolution of the measurements thus confirming that premixed-charge engine turbulent flames generally appear to be wrinkled laminar flames.
Technical Paper

Three-Dimensional Visualization of Premixed-Charge Engine Flames: Islands of Reactants and Products; Fractal Dimensions; and Homogeneity

1988-02-01
881635
The structure of turbulent flames was examined in a premixed-charge, spark-ignition ported engine using a three-dimensional visualization technique with 10 ns time resolution and 350 µm best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300, 1200 and 2400 rpm with stoichiometric and lean propane/air mixtures. The second and third harmonic beams of an Nd-YAG laser (532 nm and 355 nm), along with the two strongest beams (first Stokes (683 nm) and first anti-Stokes (436 nm)) from a hydrogen Raman shifter pumped by the second harmonic were used to create four parallel laser sheets each of less than 300 microns thickness. The laser sheets were passed through a transparent quartz ring in the cylinder head parallel to the piston top with vertical separations between successive sheets ranging from 1.5 to 0.9 mm.
Technical Paper

Three-Dimensional Modeling of Soot and NO in a Direct-injection Diesel Engine

1995-02-01
950608
Results of comparisons of computed and measured soot and NO in a direct-injection Diesel engine are presented. The computations are carried out using a three-dimensional model for flows, sprays and combustion in Diesel engines. Autoignition of the Diesel spray is modeled using an equation for a progress variable which measures the local and instantaneous tendency of the fuel to autoignite. High temperature chemistry is modeled using a local chemical equilibrium model coupled to a combination of laminar kinetic and turbulent characteristic times. Soot formation is kinetically controlled and soot oxidation is represented by a model which has a combination of laminar kinetic and turbulent mixing times. Soot oxidation appears to be controlled near top-dead-center by mixing and by kinetics as the exhaust is approached. NO is modeled using the Zeldovich mechanism.
Technical Paper

Three-Dimensional Computations of Diesel Sprays in a Very High Pressure Chamber

1994-10-01
941896
Results of three-dimensional computations of non-vaporizing and vaporizing Diesel sprays in a very high pressure (up to 18.4 MPa without combustion) environment are presented. These pressures and corresponding density ratios of ambient gas to injected liquid are about a factor of two greater than those in current Diesel engines. The spray model incorporates a line source for drops, heat, mass and momentum exchange between the gas and liquid phases, turbulent dispersion of drops, collisions and coalescences, and drop breakup. The accuracy of the model is assessed by making comparisons of computed and measured spray penetrations. Reasonable agreement is obtained for a broad range of conditions. A scaling for time and axial distance clarifies these results.
Technical Paper

The Use of Intake and Exhaust Measurements with Computer Simulations to Investigate the Evolution of the Internal Flow Field in a Ported Engine

1991-02-01
910262
Recent measurements by of gas intake flows and exhaust pressure in a motored, ported, single-cylinder engine with strong swirl and roll have been used as boundary conditions to a three-dimensional, transient computer simulation of the flow within the cylinder. For each condition, the calculation is continued over several engine cycles until the periodic solution is obtained. The computed TDC tangential velocity and turbulence intensity are then compared with measured ones. A technique is described to evaluate scavenging efficiency, the fraction of charge that remains in the cylinder over later cycles and the degree of mixedness of fresh and residual charge. For this motored ported engine, it is found that the scavenging efficiency is very low (19.4% at 1200 RPM) and the inflow from the exhaust ports is very significant. For practical ported engines with combustion, the scavenging efficiency is much higher but the inflows from exhaust ports are still expected to be significant.
Technical Paper

The Effects of Fuel Atomization, Vaporization, and Mixing on the Cold-Start UHC Emissions of a Contemporary S.I. Engine with Intake-Manifold Injection

1995-10-01
952482
Engine-out, cold-start (from 20°C) UHC emissions from a contemporary 2.0 4-cylinder engine with swirl control were measured with FID and FT-IR. The steady-state, end of test operation was 1500 rpm, 2.6 bar BMEP (25% load) and stoichiometric mixture. Four fuel systems were employed pintle-type port-injected gasoline, air-forced port-injected gasoline, port-injected propane, and premixed propane. These fuel systems were chosen to separate effects of fuel atomization, vaporization, and fuel-air mixing. Each system was optimized with respect to injector targeting, injection timing, mixture enrichment, and spark advance. Open-valve injection timing increased UHC emissions more with the pintle-type injector than with the air-forced, system. UHC emissions with propane injection were minimized with open valve injection.
Technical Paper

THREE-DIMENSIONAL COMPUTATIONS OF FLOWS IN A STRATIFIED-CHARGE ROTARY ENGINE

1987-02-01
870409
The first three-dimensional rotary-engine computations are reported of exhaust, intake (with side and peripheral ports, and with different intake turbulence intensities and length scales), compression, homogeneous-charge combustion, dual liquid fuel injection, and dual liquid fuel injection and combustion. The model includes a k-ε submodel for turbulence, a stochastic treatment of the fuel drops and a hybrid laminar and mixing-controlled submodel for the conversion of reactant to products. The code is an extensively modified version of KIVA. The latter was developed at the Los Alamos National Laboratory for reciprocating engines.
Technical Paper

Swirl-Spray Interactions in a Diesel Engine

2001-03-05
2001-01-0996
Swirl in Diesel engines is known to be an important parameter that affects the mixing of the fuel jets, heat release, emissions, and overall engine performance. The changes may be brought about through interactions of the swirling flow field with the spray and through modifications of the flow field. The purpose of this paper is to investigate the interaction of the swirl with sprays in a Diesel engine through a computational study. A multi-dimensional model for flows, sprays, and combustion in engines is employed. Results from computations are reported with varying levels of swirl and initial turbulence in two typical Diesel engine geometries. It is shown that there is an optimal level of swirl for each geometry that results from a balance between increased jet surface area and, hence, mixing rates and utilization of air in the chamber.
Technical Paper

Simple Modeling of Autoignition in Diesel Engines for 3-D Computations

1993-10-01
932656
For practical, extensive 3-D computations for engine improvements, each physical submodel needs to be the simplest that is compatible with the accuracy of all other physical submodels and of the numerics. The addition of one progress variable controlled by one Arrhenius term is shown to be adequate to reproduce Diesel ignition delay in 2-D and 3-D computations. The rest of the model is that used for years by the authors to optimize combustion in reciprocating and rotary engines with premixed and non-premixed charges, including all of its model constants. This minimal Diesel autoignition submodel reproduces well trends and magnitudes of ignition delay versus chamber temperature and pressure. As in experiments, it is found that multiple ignition sources develop in rapid succession at various locations around the fuel spray after the first ignition event.
Technical Paper

Pressure Non-Uniformity and Mixing Characteristics in Stratified-Charge Rotary Engine Combustion

1988-02-01
880624
Studies are reported of stratified-charge combustion in rotary engines. They were performed with a three-dimensional model that computes intake, compression, liquid fuel injection, combustion, expansion, and exhaust. Comparisons are shown of computed and measured chamber pressures for two engines and seven conditions. They are the first comparisons of three-dimensional computations for rotary engines. The agreement is adequate for the purpose of interpreting the main features of the combustion flowfield. Then two subjects are considered: the mixing of injected-fuel and air, and the pressure non-uniformity within the combustion chamber. It is found that the TDC turbulence diffusivity of rotary engines in general is smaller than in corresponding reciprocating engines because of the longer time between intake and TDC. The pressure non-uniformity is shown to be caused by large fluid acceleration around TDC.
Technical Paper

Preliminary Turbulence Length Scale Measurements in a Motored IC Engine

1986-03-01
860021
A recently developed laser Doppler velocimetry system for making two-point spatial correlation measurements of velocity fluctuations has been applied to the turbulent flow field of an IC engine. Fluctuation integral length scales have been measured within the clearance volume of a ported, single cylinder engine with a disc-shaped chamber and a compression ratio of 8.0. The engine was motored at 600 rpm and the engine flow field had a swirl ratio at top dead center of approximately 4. These measurements were made at the center of the clearance height at three-quarters of the cylinder radius. The integral length scale was found to reach a minimum of approximately one-fifth of the clearance height near IDC. Comparison of the results obtained using this technique with the integral length scales measured in engines by other authors using different methods gives agreement to within a factor of two.
Technical Paper

On the Feasibility of Quantitative, Single-Shot, Spontaneous Raman Imaging in an Optically Accessible Engine Cylinder

1999-10-25
1999-01-3537
Two-Dimensional, single-shot spontaneous Raman measurements of methane concentration were performed in an optically accessible engine after direct injection with the use of modified air-assisted injector. The spatial resolution of the measurements was determined by the thickness of the laser sheet which was 0.8 mm. The error in the methane number density measurement was determined by the noise in the intensified camera output and was 16% of pure methane number density at the experimental conditions. Effective suppression of the stray light background was the main experimental difficulty. Satisfactory results were acquired only when the spark plug was substituted by a plug covered with a velvet-like, black piece of cloth. These preliminary results show that, for the specific engine configuration, fast mixing of the charge yields a very mild stratification after the end of injection.
Technical Paper

LDV Measurements in an Engine with Square and Circular Piston Cups

1987-11-01
872073
Cycle-resolved LDV measurements of tangential and radial velocities were made in a ported engine within four piston cups. One cup was centered circular, one off-center circular, one centered square and one off-center square. The engine speed was 1200 rpm, the compression ratio 10.8, the squish area 75% and the TDC swirl ratio 4 for a pancake chamber. The velocity measurements were made at four depths in two axial sections. Near TDC in the centered circular cup, the profile of the ensemble-averaged tangential velocity tends to solid body with a swirl ratio of 12.5. In the centered square cup, the same velocity tends to solid-body profile along the short section and to top-hat profile along the outer part of the long section. The corresponding TDC swirl ratios are 11.3 and 5.5 due to mass conservation. The trends are similar but more complex in the off-center circular and square cups. In the centered circular cup, the swirl center is close to the cylinder axis near TDC.
Technical Paper

Jet-Jet and Jet-Wall Interactions of Transient Jets from Multi-Hole Injectors

1999-03-01
1999-01-0513
Interactions between the jets in a multi-hole injector and between the jet and the wall may affect the fuel-air mixing processes in a direct-injection Diesel engine. These interactions are the subject of the investigation in this work. It is known that in the case of free jets, for a given total mass and momentum flow rate, increasing the number of holes would result in an increase in the mixing rate. In the case of a multi-hole injector in an engine, however, if the number of holes are increased beyond an optimum value, the interaction between the jets themselves may result in a reduced mixing. In the limit of increasing the number of holes, a hollow-cone jet would result. The fuel-air mixing in the hollow-cone jet is shown to be slower than in a multi-hole injector with an optimum number of holes.
Technical Paper

Investigation of the Fuel Distribution in a Two-Stroke Engine with an Air-Assisted Injector

1994-03-01
940394
Results of experiments performed on a direct-injection two-stroke engine using an air-assisted injector are presented. Pressure measurements in both the engine cylinder and injector body coupled with backlit photographs of the spray provide a qualitative understanding of the spray dynamics from the oscillating poppet system. The temporal evolution of the spatial distribution of both liquid and vapor fuel were measured within the cylinder using the Exciplex technique with a new dopant which is suitable for tracing gasoline. However, a temperature dependence of the vapor phase fluorescence was found that limits the direct quantitative interpretation of the images. Investigation of a number of realizations of the vapor field at a time typical of ignition for a stratified-charge engine shows a high degree of cycle to cycle variability with some cycles exhibiting a high level of charge stratification.
Technical Paper

Initial Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1994-03-01
940398
Efforts are reported to reproduce the distribution of liquid and vapor fuel from a pulsating hollow-cone liquid-only injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The measurements show that shortly after the beginning of the injection the maximum liquid and vapor fuel concentrations are along the axis but also that the spray achieves substantial radial and axial penetrations. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments so that little arbitrariness was left in reproducing the spray in the engine. Two spray models were used. In one the large drops produced by the break up of the liquid sheet were introduced into the numerical field at the injector exit nearly with the poppet seat angle.
Technical Paper

Gas Versus Spray Injection: Which Mixes Faster?

1994-03-01
940895
Results are presented of 3-D computations of direct injection of gaseous methane and of liquid tetradecane through a multi-hole injector into a Diesel engine. The study focusses on the distribution of fuel/air ratio within the resulting gas and spray jets under typical Diesel conditions prior to ignition. It is shown that for a significant time after start of injection, the fraction of the vapor fuel which is in richer-than-flammable mixtures is greater in gas jets than in sprays. For methane injection, it is also shown that changing some of the flow conditions in the engine or going to a poppet-type injector, does not result in improved mixing. An explanation of these results is provided also through an analysis of the self-similar gas jet and 2-D computations of gas and spray jets into constant pressure gas. A scaling for time and axial distance in the self-similar gas jet also clarifies the results.
Technical Paper

Fuel Distribution Effects on the Combustion of a Direct-injection Stratified-Charge Engine

1995-02-01
950460
Simultaneous fuel distribution images (by shadowgraph and laser-induced fluorescence) and cylinder pressure measurements are reported for a combusting stratified-charge engine with a square cup in the head at 800 RPM and light load for two spark locations with and without swirl. Air-assisted direct-injection occurred from 130°-150° after bottom dead center (ABDC) and ignition was at 148° ABDC. The engine is ported and injection and combustion take place every 6th cycle. The complicated interaction of the squish, fuel/air jet, square cup, spark plug geometry and weak tumble gives rise to a weak crossflow toward the intake side of the engine with no swirl, but toward the exhaust side in the presence of strong swirl, skewing the spray slightly to that side.
Technical Paper

Flamelet Structure in Diesel Engines under Lean and Stoichiometric Operating Conditions

2008-04-14
2008-01-1362
Stoichiometric operation is one possible approach for reducing in-cylinder pollutant formation in diesel engines. High levels of exhaust gas recirculation (EGR) combined with stoichiometric operation may be employed to decrease soot and NO emissions from the engine. In this work, in-cylinder conditions are estimated for a diesel engine near top dead center, prior to the start of injection, for different levels of EGR. Two modes of engine operation are considered: the first is operation with excess air such that the overall equivalence ratio is 0.5, and the second is stoichiometric operation. These conditions are employed in separate studies to understand the influence of both EGR and mode of operation on pollutant formation and ignition. N-heptane is used as a representative fuel. Its oxidation chemistry is modeled using a reduced 159-species, 1540-step mechanism. A kinetics-based soot model and NO sub-mechanism are employed to investigate pollutant formation.
X