Refine Your Search

Topic

Search Results

Standard

Thermophysical Properties of the Natural Environment, Gases, Liquids, and Solids

2004-06-22
HISTORICAL
AIR1168/9
This AIR is arranged in the following four sections: 2A - Properties of the Natural Environment 2B - Properties of Gases 2C - Properties of Liquids 2D - Properties of Solids A summary of each section is given below. Section 2A - This section includes currently applicable earth atmosphere standards (Refs. 101 and 103) and data on the near-Earth environment. Limited data on Mars and Venus reflected solar and planetary-emitted radiation and on micrometeorite data are also included. For space vehicle applications, environmental models are of two general types: orbital and reentry. For orbital models, variable properties such as time and solar flux are usually averaged. Reentry atmospheres are chiefly a function of location and altitude, and selection may be based on reentry location. Variation with latitude is an important local effect (Ref. 106). The electromagnetic solar radiation data in this section are for altitudes above the Earth’s atmosphere.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2019-04-11
CURRENT
AIR1168/1A
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2011-06-20
HISTORICAL
AIR1168/1
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Spacecraft Thermal Balance

2004-09-08
HISTORICAL
AIR1168/12
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Spacecraft Thermal Balance

2011-07-25
CURRENT
AIR1168/12A
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

LIQUID COOLING SYSTEMS

1985-09-01
HISTORICAL
AIR1811
This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2015-11-09
CURRENT
ARP699E
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2008-11-06
HISTORICAL
AS8040A
This SAE Aerospace Standard (AS) covers internal combustion heat exchanger type heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2013-02-14
HISTORICAL
AS8040B
This SAE Aerospace Standard (AS) covers combustion heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

Heater and Accessories, Aircraft Internal Combustion Heat Exchanger Type

2019-10-01
CURRENT
AS8040C
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
Standard

HEATER, AIRPLANE, EXHAUST HOT AIR TYPE

1943-01-01
HISTORICAL
ARP86
These specifications are written to cover the subject of exhaust hot air type heaters under three classifications, namely. A EXHAUST HOT AIR TYPE HEATERS - GENERAL - Dealing with features applicable to all makes and users. B EXHAUST HOT AIR TYPE HEATERS - MILITARY AND COMMERCIAL -Covering features applicable to military and commercial aircraft. C DESIRABLE DESIGN FEATURES - General information for use of those concerned with meeting requirements contained herein.
Standard

HEATER, AIRCRAFT INTERNAL COMBUSTION HEAT EXCHANGER TYPE

1988-02-01
HISTORICAL
AS8040
This standard covers internal combustion heat exchanger type heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

General Requirements for Application of Vapor Cycle Refrigeration Systems for Aircraft

1997-10-01
HISTORICAL
ARP731B
Recommendations of this ARP refer specifically to the application of closed cycle vapor cycle refrigeration systems as a source of cooling in an aircraft air conditioning system. General recommendations for an air conditioning system which may include a vapor cycle system as a cooling source are included in ARP85, Air Conditioning Equipment, General Requirements for Subsonic Airplanes, ARP292, Air Conditioning, Helicopters, General Requirements For, and AIR806, Air Conditioning Design Information for Cargo and High Density Passenger Transport Airplanes, and are not included herein. Vapor cycle refrigeration system design recommendations are presented in this ARP in the following general areas: a SYSTEM Design Recommendations: (See Section 3) b COMPONENT Design Recommendations: (See Section 4) c Desirable Design Features: (See Section 5)
X