Refine Your Search

Topic

Search Results

Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Technical Paper

Sound and Vibration Levels of CI Engine with Synthetic Kerosene and n-Butanol in RCCI

2016-04-05
2016-01-1306
Diesel engines provide the necessary power for accomplishing heavy tasks across the industries, but are known to produce high levels of noise. Additionally, each type of fuel possesses unique combustion characteristics that lead to different sound and vibration signatures. Noise is an indication of vibration, and components under excessive vibration may wear prematurely, leading to repair costs and downtime. New fuels that are sought to reduce emissions, and promote sustainability and energy independence must be investigated for compatibility from a sound and vibrations point-of-view also. In this research, the sound and vibration levels were analyzed for an omnivorous, single cylinder, CI research engine with alternative fuels and an advanced combustion strategy, RCCI. The fuels used were ULSD#2 as baseline, natural gas derived synthetic kerosene, and a low reactivity fuel n-Butanol for the PFI in the RCCI process.
Technical Paper

Simultaneous In-Cylinder Surface Temperature Measurements with Thermocouple, Laser-induced Phosphorescence, and Dual Wavelength Infrared Diagnostic Techniques in an Optical Engine

2015-04-14
2015-01-1658
As engine efficiency targets continue to rise, additional improvements must consider reduction of heat transfer losses. The development of advanced heat transfer models and realistic boundary conditions for simulation based engine design both require accurate in-cylinder wall temperature measurements. A novel dual wavelength infrared diagnostic has been developed to measure in-cylinder surface temperatures with high temporal resolution. The diagnostic has the capability to measure low amplitude, high frequency temperature variations, such as those occurring during the gas exchange process. The dual wavelength ratio method has the benefit of correcting for background scattering reflections and the emission from the optical window itself. The assumption that background effects are relatively constant during an engine cycle is shown to be valid over a range of intake conditions during motoring.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

Simulation and Experimental Measurement of CO2*, OH* and CH2O* Chemiluminescence from an Optical Diesel Engine Fueled with n-Heptane

2013-09-08
2013-24-0010
A means of validating numerical simulations has been developed which utilizes chemiluminescence measurements from an internal combustion engine. By incorporating OH*, CH2O* and CO2* chemiluminescence sub-mechanisms into a detailed n-heptane reaction mechanism, excited species concentration and chemiluminescence light emission were calculated. The modeled line-of-sight chemiluminescence emission allows a direct comparison of simulation results to experimentally measured chemiluminescence images obtained during combustion in an optically accessible compression ignition engine using neat n-heptane fuel. The spray model was calibrated using in-cylinder liquid penetration length Mie scattering measurements taken from the jets of the high-pressure piezo injector.
Technical Paper

Poultry Fat FAME Biodiesel Blends Characteristics and Performance in an IDI Engine for APU Applications

2014-04-01
2014-01-1265
This study investigates the combustion, emissions, and performance of biodiesel produced from poultry fat FAME (fatty acid methyl esters) in an indirect injection (IDI) engine. The poultry fat FAME blends were evaluated against ultra-low sulfur diesel #2 (ULSD#2) at 2600 rpm at 100% engine load. The tested biodiesel blends of poultry fat FAME included B20 to B50 measured by weight percentage in ULSD#2. Before engine testing, the energy content, dynamic viscosity, and thermal properties were measured for all poultry fat blends, 100% poultry fat FAME, and ULSD#2. Once the preliminary data had been obtained, it was determined that a blend of up to 50% poultry fat FAME would be within ASTM6751 requirements. The ignition delay stayed constant at 13 CAD for all blends tested and the gross heat release for ULSD#2 and B50 were 24.4 and 25.0 J/deg respectively.
Technical Paper

Performance of an Indirect Injected Engine Operated with ULSD#2 Blended with Fischer-Tropsch Synthetic Kerosene

2017-03-28
2017-01-1283
This study investigates the use of a natural gas derived fuel, synthetic Fischer-Tropsch (F-T) paraffinic kerosene, in both it’s neat form and blended with ultra-low sulfur diesel (ULSD#2), in a naturally aspirated indirect injected engine. A blend of a mass ratio with 20% of the F-T fuel and 80% ULSD#2 was studied for its combustion characteristics, emissions, and efficiency compared to conventional ULSD#2 at a constant speed of 2400 RPM and operating at IMEP range from 4.5 to 6.5 bar. The F-T blend produced ignition delays 17% shorter than ULSD#2 resulting in slightly lower peak apparent heat release rates (AHRR) along with decreased peak combustion temperatures, by up to 50°C. Nitrogen Oxide (NOx) emissions of the F-T blend decreased by 4.0% at 4.5 bar IMEP and at negligible amounts at 6.5 bar IMEP. The F-T blend decreased soot significantly at 5.4 bar IMEP by 40%. Efficiencies of the F-T blend were similar to ULSD#2.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Performance of JP-8 Unified Fuel in a Small Bore Indirect Injection Diesel Engine for APU Applications

2012-04-16
2012-01-1199
Recent legislation entitled “The Single Fuel Forward Policy” mandates that all vehicles deployed by the US military be operable with aviation fuel (JP-8). Therefore, the authors are conducting an investigation into the influence of JP-8 on a diesel engine's performance. The injection, combustion, and performance of JP-8, 20-50% by weight in ULSD (diesel no.2) mixtures (J20-J50) produced at room temperature, were investigated in a small indirect injection, high compression ratio (24.5), 77mm separate combustion chamber diesel engine. The effectiveness of JP8 for application in an auxiliary power unit (APU) at continuous operation (100% load) of 4.78bar bmep/2400rpm was investigated. The blends had an ignition delay of approximately 1.02ms that increased slightly in relation to the amount of JP-8 introduced. J50 and diesel no.2 exhibited similar characteristics of heat release, the premixed phase being combined with the diffusion combustion.
Technical Paper

Performance Evaluation - Combustion, Emissions and Vibrations-of n-Butanol Binary Mixture with ULSD in an Indirect Injection Engine

2017-03-28
2017-01-0875
This paper investigates the performance of an indirect injection (IDI) diesel engine fueled with Bu25, 75% ultra-low sulfur diesel (ULSD#2) blended with 25% n-butanol by mass. N-butanol, derivable from biomass feedstock, was used given its availability as an alternative fuel that can supplement the existing limited fossil fuel supply. Combustion and emissions were investigated at 2000 rpm across loads of 4.3-7.2 bar indicated mean effective pressure (IMEP). Cylinder pressure was collected using Kistler piezoelectric transducers in the precombustion (PC) and main combustion (MC) chambers. Ignition delays ranged from 0.74 - 1.02 ms for both operated fuels. Even though n-butanol has a lower cetane number, the high swirl in the separate combustion chamber would help advance its premixed combustion. The heat release rate of Bu25 became initially 3 J/crank-angle-degree (CAD) higher than that of ULSD#2 as load increased to 7.2 bar IMEP.
Technical Paper

Optical and Numerical Investigation of Pre-Injection Reactions and Their Effect on the Starting of a Diesel Engine

2009-04-20
2009-01-0648
Ultraviolet chemiluminescence has been observed in a diesel engine cyclinder during compression, but prior to fuel injection under engine starting conditions. During a portion of the warm-up sequence, the intensity of this emission exhibits a strong correlation to the phasing of the subsequent combustion. Engine exhaust measurements taken from a continuously misfiring, motored engine confirm the generation of formaldehyde (HCHO) in such processes. Fractions of this compound are expected to be recycled as residual to participate in the following combustion cycle. Spectral measurements taken during the compression period prior to fuel injection match the features of Emeleus' cool flame HCHO bands that have been observed during low temperature heat release reactions occurring in lean HCCI combustion. That the signal from the OH* bands is weak implies a buildup of HCHO during compression.
Technical Paper

Investigation of Low-Temperature Combustion in an Optical Engine Fueled with Low Cetane Sasol JP-8 Fuel Using OH-PLIF and HCHO Chemiluminescence Imaging

2013-04-08
2013-01-0898
Low cetane JP-8 fuels have been identified as being difficult to use under conventional diesel operation. However, recent focus on low-temperature combustion (LTC) modes has led to an interest in distillate hydrocarbon fuels having high volatility and low autoignition tendency. An experimental study is performed to evaluate low-temperature combustion processes in a small-bore optically-accessible diesel engine operated in a partially-premixed combustion mode using low-cetane Sasol JP-8 fuel. This particular fuel has a cetane number of 25. Both single and dual injection strategies are tested. Since long ignition delay is a consequence of strong autoignition resistance, under the conditions examined, low cetane Sasol JP-8 combustion can only take place with a double injection strategy: one pilot injection event in the vicinity of exhaust TDC and one main injection event near firing TDC.
Journal Article

In-Cylinder Wall Temperature Influence on Unburned Hydrocarbon Emissions During Transitional Period in an Optical Engine Using a Laser-Induced Phosphorescence Technique

2014-04-01
2014-01-1373
Emissions of Unburned Hydrocarbons (UHC) from diesel engines are a particular concern during the starting process, when after-treatment devices are typically below optimal operating temperatures. Drivability in the subsequent warm-up phase is also impaired by large cyclic fluctuations in mean effective pressure (MEP). This paper discusses in-cylinder wall temperature influence on unburned hydrocarbon emissions and combustion stability during the starting and warm-up process in an optical engine. A laser-induced phosphorescence technique is used for quantitative measurements of in-cylinder wall temperatures just prior to start of injection (SOI), which are correlated to engine out UHC emission mole fractions and combustion phasing during starting sequences over a range of charge densities, at a fixed fueling rate. Squish zone cylinder wall temperature shows significant influence on engine out UHC emissions during the warm-up process.
Technical Paper

Impact of Biodiesel Blends on In-cylinder Soot Temperature and Concentrations in a Small-Bore Optical Diesel Engine

2012-04-16
2012-01-1311
Biodiesel is a desirable alternative fuel for the diesel engine due to its low engine-out soot emission tendency. When blended with petroleum-based diesel fuels, soot emissions generally decrease in proportion to the volume fraction of biodiesel in the mixture. This paper presents an experimental investigation of biodiesel impact on in-cylinder soot temperature and concentrations in a single-cylinder, small-bore, optical access, compression ignition engine. While in-cylinder soot measurements have been widely performed with two-color thermometry implemented on digital cameras, their finite dynamic range limits the observation of soot due to its dramatically different radiation intensities. To expand the dynamic range of two-color measurements, this investigation utilizes three cameras. A high-speed CMOS color camera with a wide-band Bayer filter is used to obtain simultaneous measurements of soot temperature and KL factor for high intensity soot clouds within one cycle.
Technical Paper

Experimental Validation of Jet Fuel Surrogates in an Optical Engine

2017-03-28
2017-01-0262
Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
Technical Paper

Experimental Investigation on the Combustion and Emissions Characteristics of n-Butanol / GTL and n-Butanol/Diesel Blends in a Single-Cylinder MD-CI Engine

2017-03-28
2017-01-0719
In this study, the combustion and emissions characteristics of n-butanol/GTL and n-butanol/ultra-low sulfur diesel (ULSD) blends are compared in a single-cylinder experimental diesel engine. The n-butanol was blended with a Fischer-Tropsch (FT) gas-to-liquid (GTL) fuel, at 25% and 50% mass. N-butanol was also blended with ULSD at the same mass ratios. FT fuels are an attractive alternative to petroleum based fuels because they can be used as a drop-in fuel with existing infrastructure. N-butanol is renewable fuel capable of being produced from waste biomass sources. The investigations were conducted at 1500 rpm and three loads of 2.75, 4.75, and 6.75 IMEP, representative for the research engine. 15% exhaust gas recirculation was utilized along with a supercharger to increase the intake pressure to 1.2 bar absolute. Neat ULSD and GTL, respectively, were investigated as a baseline.
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Journal Article

Ethanol/N-Heptane Dual-Fuel Partially Premixed Combustion Analysis through Formaldehyde PLIF

2012-04-16
2012-01-0685
As a result of recent focus on the control of Low Temperature Combustion (LTC) modes, dual-fuel combustion strategies such as Reactivity Controlled Compression Ignition (RCCI) have been developed. Reactivity stratification of the auto-igniting mixture is thought to be responsible for the increase in allowable engine load compared to other LTC combustion modes such as Homogenous Charge Compression Ignition (HCCI). The current study investigates the effect of ethanol intake fuel injection on in-cylinder formaldehyde formation and stratification within an optically accessible engine operated with n-heptane direct injection using optical measurements and zero-dimensional chemical kinetic models. Images obtained by Planar Laser Induced Fluorescence (PLIF) of formaldehyde using the third harmonic of a pulsed Nd:YAG laser indicate an increase in formaldehyde heterogeneity as measured by the fluorescence signal standard deviation.
Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
X