Refine Your Search

Topic

Author

Search Results

Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
Technical Paper

Transient NOx Characteristics of Freight Vehicles with EGR System in Real Traffic Conditions

2005-04-11
2005-01-1619
In order to clarify the reason why NOx emissions factor becomes higher at vehicle acceleration at intersections etc, two freight vehicles, that have EGR system for the reduction of NOx, were tested by an on-board NOx measurement system. Higher NOx emissions factor was observed in operations in lower-gear operation for each vehicle. Since the engine speed change was higher in the operation of lower gears, NOx emissions characteristics were analyzed in view of engine torque, NOx mass emissions and EGR rate, considering engine speed change. It was found that lower-gear operations made the engine speed change higher and the EGR rate lower. This seems to be one of the factors to engender the intensive NOx pollution at roadsides.
Technical Paper

The Research about Engine Optimization and Emission Characteristic of Dual Fuel Engine Fueled with Natural Gas and Diesel

2012-10-23
2012-32-0008
CNG/diesel dual-fuel engine is using CNG as a main fuel, and injects diesel only a little as an ignition priming. In this study, remodeling an existing diesel engine into dual-fuel engine that can inject diesel with high pressure by CRDI (Common Rail Direct Injection), and injecting CNG at intake port for premixing. The results show that CNG/diesel dual-fuel engine satisfied coordinate torque and power with conventional diesel engine. And CNG alternation rate is over 89% in all operating ranges of CNG/diesel dual-fuel engine. PM emission is lower 94% than diesel engine, but NOx emission is higher than diesel engine. The output of dual fuel mode is 95% by the diesel mode. At this time, amount of CO₂ and PM are decreased while CO, NOx, and THC are increased. In NEDC mode, exhaust gases except NOx are decreased.
Technical Paper

The Effects of Some Engine Variables on Measured Rates of Air Entrainment and Heat Release in a DI Diesel Engine

1980-02-01
800253
The rate of air entrainment into the flame and the rate of heat release are thermodynamically calculated in a DI diesel engine: A two-zone model is proposed which uses as input data three measured values of cylinder pressure, flame temperature, and injection rate. The correlations between both rates under various conditions make it clear that the combustion during early and main periods of diffusion combustion is mainly controlled by air entrainment into the flame. The effects of injection pressure, piston configuration, and swirl intensity on the air entrainment are also studied. And the extent of mixing in the flame is evaluated by the equivalence ratio in the flame which is also obtained by the same model. The trends of exhausted NO and soot concentrations well correlate with the equivalence ratios in the flame and measured flame temperatures under all conditions studied.
Technical Paper

Study on Local Air Pollution Caused by NOx from Diesel Freight Vehicle

2002-03-04
2002-01-0651
An on-board measurement system that simultaneously measures road traffic, vehicle running conditions and exhaust emissions was installed in a diesel freight vehicle with two tons payload. Actual NOx mass emissions were compared with that measured in a typical test mode for urban cities on a chassis dynamometer. The frequency of vehicle accelerations in actual urban cities was found to exceed that of a typical test mode for urban cities on a chassis dynamometer, which resulted in increased NOx from actual running conditions compared with the typical test mode for urban cities. The dynamics of NOx emissions at an actual roadside was also analyzed. It was observed that NOx emission based on distance with an actual city route test was about two times higher than that of a free way route and a typical test mode for urban cities. The reason for high NOx with the city route was explained by the higher frequency of lower gears at which higher NOx is emitted.
Technical Paper

Study on Characteristics of Particulate Emissions from a Direct Injection Diesel Engine using a Freezing Method in Sampling Process

1984-09-01
841077
Reduction of particulate emissions from diesel engine is an important theme from the view point of air pollution. Experiments were carried out using a four-stroke single cylinder direct-injection diesel engine. A new method to measure diesel particulates has been developed. Particulates were sampled with a freezing method just behind an exhaust valve and examined through a scanning electron microscope. Shape and structure of particulates and the size distributions are measured under wide operating conditions obtained with above method. The total mass of particulate emissions was measured using a dilution tunnel sampling system. The heat release processes were analyzed using indicator diagrams and the relation between burning condition and particulate emissions were discussed, after systematic experiments under constant revolution speed of 2000 r/min for several load and injection timing conditions.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

Simultaneous 2-D Imaging of OH Radicals and Soot in a Diesel Flame by Laser Sheet Techniques

1996-02-01
960834
The OH and soot in an unsteady flame, which was achieved in a rapid compression machine, were visualized simultaneously by the laser-induced fluorescence and laser-induced scattering techniques. The fuel mixture consisting of 90% paraffin hydrocarbon (reference fuel) and 10% polypropylene-glycol was used to reduce the optical attenuation caused by dense soot cloud. The simultaneous images of the fluorescence from OH and scattering from soot show that the soot and OH exist separately from each other in the leading portion of the spray flame, and the OH is formed earlier than the soot in the near field region of spray flame.
Technical Paper

Simulation Study of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Propane

2014-04-01
2014-01-1104
A simulation study was conducted to examine the transition from SI combustion to HCCI combustion in a two-stroke free piston engine fuelled with propane. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. The dynamic model included an analysis of the piston motion, based on Newton's second law. The linear alternator model included an analysis of electromagnetic force, which was considered to be a resistance force for the piston motion. The thermodynamic model was used to analysis thermodynamic processes in the engine cycle, including scavenging, compression, combustion, and expansion processes. Therein, the scavenging process was assumed to be a perfect process. These mathematical models were combined and solved by a program written in Fortran.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

Prediction of Spray Evaporation in Reciprocating Engines

1977-02-01
770413
A theoretical model for predicting the evaporation process of liquid fuel sprays in both diesel and S.I. stratified charge engines is presented: The injected liquid fuel is assumed to break up into droplets with a certain time delay which is determined through careful experiments on the heat absorption process of injected fuel in a high temperature, high pressure inert atmosphere. The evaporation, heat absorption, and motion of these droplets are computed, together with the change of gas conditions inside the spray, by solving a coupled system of equations made up of heat and mass balance between droplets and gas. The effects of such parameters as the surrounding gas conditions, fuel properties, and spray characteristics on evaporation are investigated by the model. Reference is also made to the application of a predicted result to the calculation of burning rate in a direct injection diesel engine.
Technical Paper

Prediction of Cycle-to-Cycle Variation of In-Cylinder Flow in a Motored Engine

1993-03-01
930066
A prediction model of the cycle-to-cycle variation of the in-cylinder flow in IC engines which employs the time averaged k-ε turbulence model is proposed. The concept is based on an assumption that the power spectrum of the cycle-to-cycle variation can be deduced from the power spectra of both the mean velocity and turbulence intensity. To validate this model, in-cylinder velocity measurement in a transparent cylinder engine with a 2-valve cylinder-head is made using an LDV system. Comparisons of in-cylinder flow fields between the calculation and measurement show a good agreement in the cycle-to-cycle variation as well as the turbulence intensity. Finally, this model is applied to three kinds of flow fields to examine how the cycle-to-cycle variation may be effected. As a result, it is found that the swirl flow is effective to reduce the cycle-to-cycle variation, while the tumbling flow enhances the turbulence generation around the compression TDC.
Technical Paper

Photographic And Image Analysis Studies Of Diesel Spray And Flame With A Rapid Compression Machine And A D. I. Diesel Engine (Interpretation And Conceptual Image)

1984-01-01
845009
Some conceptual image of a diesel spray flame and its combustion promotion is shown based on the various interpretations of the enormous data obtained in our laboratory in these several years, on the flame temperature measurement by the two color method, the composition analysis by gas sampling, as well as the focus shadow photography, back illuminated photography and luminous photography by a high speed camera, on the diesel spray flame created in a large scale Rapid Compression Machine (diameter ϕ 200 mm thickness 40 mm) and a D-I engine (diameter (ϕ 95 mm)
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

Numerical Simulation of Turbulent Dispersion of Fuel Droplets in an Unsteady Spray via Discrete Vortex Method

1995-10-01
952433
The turbulent dispersion of particles in an unsteady two dimensional particle-laden jet was simulated by a discrete vortex method coupling with a model of gas/particles interaction. Numerical analysis of a spray yielded the distributions of vorticity, fuel mass concentration and local Sauter mean diameter (SMD) of droplets in a spray. The predicted distribution of local SMD of droplets in a spray demonstrated that the size of droplets in the spray periphery is larger than that of droplets in the center region of spray. This trend of distribution of drop size coincided with that of measured one. The predicted distributions of drop size and vorticity revealed that the larger droplets are easily centrifuged to the periphery of the spray. The effects of the pattern of injection rate on the mixing process in a transient spray were also investigated.
Technical Paper

Numerical Analysis of Auto Ignition and Combustion of n-Butane and Air Mixture in the Homogeneous Charge Compression Ignition Engine by Using Elementary Reactions

2003-03-03
2003-01-1090
The combustion mechanism of the homogeneous charge compression ignition (HCCI) engine has been investigated by numerical calculations. Calculations were carried out using n-butane/air elementary reactions at 0 dimension and adiabatic condition to simplify the understanding of chemical reaction mechanisms in the HCCI engine without complexities of walls, crevices, and mixture inhomogeneities. n-Butane is the fuel with the smallest carbon number in the alkane family that shows two-stage auto-ignition, heat release with low temperature reaction (LTR) and high temperature reaction (HTR), similar to higher hydrocarbons such as gasoline at HCCI combustion. The CHEMKIN II code, SENKIN and kojima's n-butane elementary reaction scheme were used for the calculations. This paper consists of three main topics. First, the heat release mechanisms of the HCCI engine were investigated. The results show that heat release with LTR is HCHO oxidation reactions.
Technical Paper

Mixing Enhancement in Diesel-Like Flames via Flame Impingement on Turbulence-Generating Plates

1992-10-01
922210
Soot concentration is very high in the periphery near the head of an unsteady spray flame which is achieved in a quiescent atmosphere in a rapid compression machine. To reduce soot concentration in this region, it was intended to improve fuel-air mixing by letting the flame impinge on a turbulence-generating plate. Two types of turbulence-generating plates, one donut-type, the other cross-type, were tested. Soot concentration in the flame was imaged using the laser shadow technique. The effect of injection pressure on soot reduction by the flame impingement was also investigated. The overall soot concentration is reduced significantly in the case when the flame impinges on the cross-type turbulence-generating plate at 50 mm (333 nozzle diameters) from the nozzle exit. The flame impingement on the cross-type turbulence-generating plate at 333 nozzle diameters makes soot reduction little dependent on injection pressures.
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

Measurement of Rate of Multiple-Injection in CDI Diesel Engines

2000-03-06
2000-01-1257
The injection rate meter based on W. Zeuch's method was improved to meet the recent requirement for precise measurement of the multiple injection rate and amount in CDI (Common rail Direct Injection) diesel engines. A pressure sensor with a high sensitivity was added to measure the small pressure increase due to the pilot injection and after injection. At the same time a flow meter having a high accuracy was installed in the discharge pipe line to obtain a correction factor to the modulus of elasticity of volume. As a result it became possible to measure the multiple injection amount at an accuracy of ±0.2mm3/stroke in a range up to 40mm3/stroke.
Technical Paper

Measurement of Flame Temperature Distribution in a D.I. Diesel Engine by Means of Image Analysis of Nega-Color Photographs

1981-02-01
810183
A new technique was proposed for measuring instantaneous distributions of flame temperature and KL factor of luminous flames. Here the principle of the two-color method was used to calculate flame temperature and KL factor from the two-color densities of a film image taken on a nega-color film. We applied this technique to the high speed nega-color photographs of flames in a D. I. diesel engine operated with varying swirl ratios, and discussed the measured results of instantaneous distributions of flame temperature and KL factors.
X