Refine Your Search

Topic

null

Search Results

Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
Technical Paper

Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2006-04-03
2006-01-0424
Due to its high efficiency and superior durability, the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the United States is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies-such as high-pressure, common-rail fuel systems; low-sulfur diesel fuel; oxides of nitrogen (NOx) adsorber catalysts or NACs; and diesel particle filters (DPFs)-allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Journal Article

The Contribution of Engine Mechanics to Improved Fuel Economy

2014-04-01
2014-01-1663
Measures for reducing engine friction within the powertrain are assessed in this paper. The included measures work in combination with several new technologies such as new combustion technologies, downsizing and alternative fuels. The friction reduction measures are discussed for a typical gasoline vehicle. If powertrain friction could be eliminated completely, a reduction of 15% in CO2 emissions could be achieved. In order to comply with more demanding CO2 legislations, new technologies have to be considered to meet these targets. The additional cost for friction reduction measures are often lower than those of other new technologies. Therefore, these measures are worth following up in detail.
Technical Paper

Systematic Approach to Analyze and Characterize Pre-ignition Events in Turbocharged Direct-injected Gasoline Engines

2011-04-12
2011-01-0343
Downsized direct-injected boosted gasoline engines with high specific power and torque output are leading the way to reduce fuel consumption in passenger car vehicles while maintaining the same performance when compared to applications with larger naturally aspirated engines. These downsized engines reach brake mean effective pressure levels which are in excess of 20 bar. When targeting high output levels at low engine speeds, undesired combustion events called pre-ignition can occur. These pre-ignition events are typically accompanied by very high cylinder peak pressures which can lead to severe damage if the engine is not designed to withstand these high cylinder pressures. Although these pre-ignition events have been reported by numerous other authors, it seems that their occurrence is rather erratic which makes it difficult to investigate or reliably exclude them.
Technical Paper

SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant

2011-09-13
2011-01-2207
Stringent global emissions legislation demands effective NOx reduction strategies, particularly for the aftertreatment, and current typical liquid urea SCR systems achieve efficiencies greater than 90% [1]. However, with such high-performing systems comes the trade-off of requiring a tank of reductant (urea water solution) to be filled regularly, usually as soon as the fuel fillings or as far as oil changes. Advantages of solid reductants, particularly ammonium carbamate, include greater ammonia densities, enabling the reductant refill interval to be extended several multiples versus a given reductant volume of urea, or diesel exhaust fluid (DEF) [2]. An additional advantage is direct gaseous ammonia dosing, enabling reductant injection at lower exhaust temperatures to widen its operational coverage achieving greater emissions reduction potential [3], as well as eliminating deposits, reducing mixing lengths, and avoiding freeze/thaw risks and investments.
Journal Article

Pre-Turbo Aftertreatment Position for Large Bore Diesel Engines - Compact & Cost-Effective Aftertreatment with a Fuel Consumption Advantage

2011-04-12
2011-01-0299
Tier 4 emissions legislation is emerging as a clear pre-cursor for widespread adoption of exhaust aftertreatment in off-highway applications. Large bore engine manufacturers are faced with the significant challenge of packaging a multitude of catalyst technologies in essentially the same design envelope as their pre-Tier 4 manifestations, while contending with the fuel consumption consequences of the increased back pressure, as well as the incremental cost and weight associated with the aftertreatment equipment. This paper discusses the use of robust metallic catalysts upstream of the exhaust gas turbine, as an effective means to reduce catalyst volume and hence the weight and cost of the entire aftertreatment package. The primarily steady-state operation of many large bore engine applications reduces the complication of overcoming pre-turbine catalyst thermal inertia under transient operation.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Journal Article

Influence of Ethanol Blends on Low Speed Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines

2017-03-28
2017-01-0687
Modern combustion engines must meet increasingly higher requirements concerning emission standards, fuel economy, performance characteristics and comfort. Especially fuel consumption and the related CO2 emissions were moved into public focus within the last years. One possibility to meet those requirements is downsizing. Engine downsizing is intended to achieve a reduction of fuel consumption through measures that allow reducing displacement while simultaneously keeping or increasing power and torque output. However, to reach that goal, downsized engines need high brake mean effective pressure levels which are well in excess of 20bar. When targeting these high output levels at low engine speeds, undesired combustion events with high cylinder peak pressures can occur that can severely damage the engine. These phenomena, typically called low speed pre-ignition (LSPI), set currently an undesired limit to downsizing.
Technical Paper

Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine

2021-04-06
2021-01-0490
Stochastic Preignition (SPI) is an abnormal combustion event that occurs in a turbocharged engine and can lead to the loss in fuel economy and engine hardware damage, and in turn result in customer dissatisfaction. It is a significant limiting factor on the use and continued downsizing of turbocharged spark ignited direct injection (SIDI) gasoline engines. Understanding and mitigating all the factors that cause and influence the rate and severity of SPI occurrence are of critical importance to the engine’s continued use and fuel economy improvements for future designs. Previous studies have shown that the heavy molecular weight components of the fuel formulations are one factor that influences the rate of SPI from a turbocharged SIDI gasoline engine. All the previous studies have involved analyzing the fuel’s petroleum hydrocarbon chemistry, but not specifically the additives that are put in the fuel to protect and clean the internal components over the life of the engine.
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

2009-04-20
2009-01-0653
The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Technical Paper

Fuel Property Effects on Emissions and Performance of a Light-Duty Diesel Engine

2009-04-20
2009-01-0488
Increased demand for highly fuel efficient propulsion systems drives the engine development community to develop advanced technologies allowing improving the overall thermal efficiency while maintaining low emission levels. In addition to improving the thermal efficiencies of the internal combustion engine itself the developments of fuels that allow improved combustion as well as lower the emissions footprint has intensified recently. This paper will describe the effects of five different fuel types with significantly differing fuel properties on a state-of-the-art light-duty HSDI diesel engine. The fuels cetane number ranges between 26 and 76. These fuels feature significantly differing boiling characteristics as well as heating values. The fuel selection also contains one pure biodiesel (SME - Soy Methyl Ester). This study was conducted in part load and full load operating points using a state of the art HSDI diesel engine.
Technical Paper

Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

2010-04-12
2010-01-1122
Effects of six different fuels on low temperature premixed compression ignition (PCI) combustion were experimentally investigated in this paper with a light-duty HSDI engine. The PCI combustion concept reduces NOx and smoke emissions simultaneously by low temperature and premixed combustion, respectively. To achieve low temperature and premixed combustion, the ignition delay is prolonged and the injection duration is shortened. Six fuels were chosen to examine the influence of cetane number (CN) and other fuel properties on low temperature PCI combustion. The fuel selection also included a pure Gas- to-Liquid (GTL) fuel and a blend of base diesel and 20% soy based biodiesel (B20). Fuel effects were studied over a matrix of seven part load points in the low temperature combustion mode. The seven part load points were specified by engine speed (RPM) and brake mean effective pressure (BMEP).
Technical Paper

Experimental and Computational Analysis of Diesel-Natural Gas RCCI Combustion in Heavy-Duty Engines

2015-04-14
2015-01-0849
Substitution of diesel fuel with natural gas in heavy-duty diesel engines offers significant advantages in terms of operating cost, as well as NOx, PM emissions and greenhouse gas emissions. However, the challenges of high THC and CO emissions, combustion stability, exhaust temperatures and pressure rise rates limit the substitution levels across the engine operating map and necessitate an optimized combustion strategy. Reactivity controlled compression ignition (RCCI) combustion has shown promise in regard to improving combustion efficiency at low and medium loads and simultaneously reducing NOx emissions at higher loads. RCCI combustion exploits the difference in reactivity between two fuels by introducing a less reactive fuel, such as natural gas, along with air during the intake stroke and igniting the air-CNG mixture by injecting a higher reactivity fuel, such as diesel, later in the compression stroke.
Journal Article

Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0723
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

Evaluation of Engine and Aftertreatment Concepts for Proposed Tier 5 off-Road Emission Standards

2024-04-09
2024-01-2628
The global push towards reducing green-house gas and criteria pollutant emissions is leading to tighter emission standards for heavy-duty engines. Among the most stringent of these standards are the California Air Resource Board (CARB) 2024+ HD Omnibus regulations adopted by the agency in August 2020. The CARB 2024+ HD Omnibus regulations require up to 90% reduction in NOx emissions along with updated compliance testing methods for on-road heavy-duty engines. Subsequently, the agency announced development of new Tier 5 standards for off-road engines in November 2021. The Tier 5 standards aim to reduce NOx/PM emissions by 90%/75% respectively from Tier 4 final levels, along with introduction of greenhouse gas emission standards for CO2/CH4/N2O/NH3. Furthermore, CARB is also considering similar updates on compliance testing as those implemented in 2024+ HD Omnibus regulations including, low-load cycle, idle emissions and 3-bin moving average in-use testing.
Technical Paper

Evaluation of 48V and High Voltage Parallel Hybrid Diesel Powertrain Architectures for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0720
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
X