Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Journal Article

Virtual Full Engine Development: 3D-CFD Simulations of Turbocharged Engines under Transient Load Conditions

2018-04-03
2018-01-0170
The simulation of transient engine behavior has gained importance mainly due to stringent emission limits, measured under real driving conditions and the concurrently demanded vehicle performance. This is especially true for turbocharged engines, as the coupling of the combustion engine and the turbocharger forms a complex system in which the components influence each other remarkably causing, for example, the well-known turbo lag. Because of this strong interaction, during a transient load case, the components should not be analyzed separately since they mutually determine their boundary conditions. Three-dimensional computational fluid dynamics (3D-CFD) simulations of full engines in stationary operating points have become practicable several years ago and will remain a valuable tool in virtual engine development; however, the next logical step is to extend this approach into the transient domain.
Technical Paper

Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization

2022-06-14
2022-37-0018
The new CO2 and emissions limits imposed to European manufacturers require the adoption of different innovative solutions, such as the use of potentially CO2-neutral synthetic fuels alongside a tailored development of the internal combustion engine, as an excellent solution to accompany the hybridization of vehicles. Dr.Ing. h.c. F. Porsche AG and FKFS, already partners for the development of engines with eFuels, propose a new study carried out on a research engine, investigating the combination of Porsche synthetic gasoline (POSYN) with an engine with millerization and passive pre-chamber. The use of CO2-neutral fuels allow for an immediate reduction in CO2 emissions from all cars already on the market, particularly since Porsche is one of the manufacturers whose cars remain in use for the longest time. The data collected on a single-cylinder engine test bench, for different fuels, with conventional spark plug are used as input for the calibration of 3D-CFD simulations.
Journal Article

Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock

2017-09-04
2017-24-0001
The most significant operation limit prohibiting the further reduction of the CO2 emissions of gasoline engines is the occurrence of knock. Thus, being able to predict the incidence of this phenomenon is of vital importance for the engine process simulation - a tool widely used in the engine development. Common knock models in the 0D/1D simulation are based on the calculation of a pre-reaction state of the unburnt mixture (also called knock integral), which is a simplified approach for modeling the progress of the chemical reactions in the end gas where knock occurs. Simulations of thousands of knocking single working cycles with a model representing the Entrainment model’s unburnt zone were performed using a detailed chemical reaction mechanism. The investigations showed that, at specific boundary conditions, the auto-ignition of the unburnt mixture resulting in knock happens in two stages.
Technical Paper

Three-Dimensional Simulation of the Piston Group

2000-03-06
2000-01-1239
For basic research on the piston group a new simulation technique is developed using the contact algorithm of a commercial FE-code (MARC). Several improvements were made in order to adapt the MARC solver to the problem of sliding and dynamic contact. The first computations, a real transient analysis simulating the piston group, of both a two-stroke engine and a modern direct injected four-stroke Diesel engine for passenger cars, show that the new method is able to calculate the movements, velocities and accelerations of the piston. The quality of the results is mainly influenced by the hydrodynamic effects.
Technical Paper

The Application of E-Fuel Oxymethylene Ether OME1 in a Virtual Heavy-Duty Diesel Engine for Ultra-Low Emissions

2020-04-14
2020-01-0349
For long haul transport, diesel engine due to its low fuel consumption and low operating costs will remain dominant over a long term. In order to achieve CO2 neutrality, the use of electricity-based, synthetic fuels (e-fuels) provides a solution. Especially the group of oxymethylene ethers (OME) is given much attention because of its soot-free combustion. However, the new fuel properties and the changed combustion characteristics place new demands on engine design. Meanwhile, the use of new fuels also creates new degrees of freedom to operate diesel engines. In this work, the application of dimethoxymethane (OME1) is investigated by means of 1D simulation at three operating points in a truck diesel engine. The subsystems of fuel injection, air path and exhaust gas are sequentially adjusted for the purpose of low emissions, especially for low nitrogen oxides (NOx).
Technical Paper

Simulation of Autoignition, Knock and Combustion for Methane-Based Fuels

2017-10-08
2017-01-2186
Engine Knock is a stochastic phenomenon that occurs during the regular combustion of spark ignition (SI) engines and limits its efficiency. Knock is triggered by an autoignition of local “hot spots” in the unburned zone, ahead of the flame front. Regarding chemical kinetics, the temperature and pressure history as well as the knock resistance of the fuel are the main driver for the autoignition process. In this paper, a new knock modeling approach for natural gas blends is presented. It is based on a kinetic fit for the ignition delay times that has been derived from chemical kinetics simulations. The knock model is coupled with an enhanced burn rate model that was modified for Methane-based fuels. The two newly developed models are incorporated in a predictive 0D/1D simulation tool that provides a cost-effective method for the development of natural gas powered SI engines.
Technical Paper

Quasi-dimensional and Empirical Modeling of Compression-Ignition Engine Combustion and Emissions

2010-04-12
2010-01-0151
Two combustion models are presented: A quasi-dimensional approach, based on the injection shape and an empirical model. Both models have computation times of less than one second per cycle. The quasi-dimensional approach for CI combustion discretizes the injection jet in slices. Pilot-injections are modeled as separate zones. The forecast capability and the limitations of the model are discussed on the basis of measurements. Mentioned above the base of the quasi-dimensional model is the injection rate. Often it is difficult to obtain these data. There is therefore another empirical approach for combustion, which does not need the injection rate as input. Both models have to be calibrated. This can be done by an automatic calibration tool on the basis of the advanced Powell method. The differences and advantages compared with other optimization methods are shown. Emission-simulation models are highly important in simulating CI engines.
Technical Paper

Potential of Pre-Turbo Exhaust Gas Aftertreatment Systems in Electrified Powertrains

2021-04-06
2021-01-0579
In order to operate effectively, exhaust gas aftertreatment (EAT) systems require a certain temperature level. The trend towards higher grades of hybridisation causes longer switch-off phases of the internal combustion engine (ICE) during which the EAT components cool down. Additionally, efficiency enhancements of the ICE result in lower exhaust gas temperatures. In combination with further strengthening of the legal requirements regarding tailpipe emissions, new approaches are desired to ensure reliable emission reductions under all conditions. One possibility to achieve a faster warm-up of the EAT system is to place it upstream of the turbine, where temperatures are higher. Although, the extra thermal inertia and larger volume upstream of the turbine delay the throttle response, even a light hybridisation is sufficient for compensating the dynamic loss.
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Methodical Selection of Sustainable Fuels for High Performance Racing Engines

2018-09-10
2018-01-1749
As the importance of sustainability increases and dominates the powertrain development within the automotive sector, this issue has to be addressed in motorsports as well. The development of sustainable high-performance fuels defined for the use in motorsports offers technical and environmental potential with the possibility to increase the sustainability of motorsports at the same or even a better performance level. At the moment race cars are predominantly powered by fossil fuels. However due to the emerging shift regarding the focus of the regulations towards high efficient powertrains during the last years the further development of the used fuels gained in importance. Moreover during the last decades a huge variety of sustainable fuels emerged that offer a range of different characteristics and that are produced based on waste materials or carbon dioxide.
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Journal Article

Investigations on the Spray-Atomization of Various Fuels for an Outwardly Opening Piezo Injector for the Application to a Pilot Injection Passenger Car Gas Engine

2020-09-15
2020-01-2117
Pilot injection gas engines are commonly used as large stationary engines. Often, the combustion is implemented as a dual-fuel strategy, which allows both mixed and diesel-only operation, based on a diesel engine architecture. The current research project focuses on the application of pilot injection in an engine based on gasoline components of the passenger car segment, which are more cost-effective than diesel components. The investigated strategy does not aim for a diesel-only combustion, hence only small liquid quantities are used for the main purpose of providing a strong, reliable ignition source for the natural gas charge. This approach is mainly driven to provide a reliable alternative to the high spark ignition energies required for high cylinder charge densities. When using such small liquid quantities, a standard common-rail diesel nozzle will apparently not be ideal regarding some general specifications.
Technical Paper

Investigation on different Injection Strategies in a Direct-Injected Turbocharged CNG-Engine

2006-09-14
2006-01-3000
Natural gas as a fuel for internal combustion engines is a combustion technology showing great promise for the reduction of CO2 and particulate matter. To demonstrate the potential of natural gas direct injection, especially in combination with supercharging, some experimental investigations were carried out using a single-cylinder engine unit with lateral injector position. For this purpose different injection valve nozzles, piston crown geometries as well as operating strategies were investigated. First experimental results show that it is also possible to better support the combustion process by providing a late injection of a part of the fuel, near ignition point, so that the additional induced turbulence can speed up the flame propagation 1 Mixture formation with gaseous fuels due to its low mass density is more critical than in gasoline engines, because even high injection velocities still produce very low fuel penetration.
Technical Paper

Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine

2020-09-15
2020-01-2188
In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy.
Journal Article

Influence of Binary CNG Substitute Composition on the Prediction of Burn Rate, Engine Knock and Cycle-to-Cycle Variations

2017-03-28
2017-01-0518
Since 0D/1D-simulations of natural gas spark ignition engines use model theories similar to gasoline engines, the impact of changing fuel characteristics needs to be taken into consideration in order to obtain results of higher quality. For this goal, this paper proposes some approaches that consider the influence of binary fuel mixtures such as methane with up to 40 mol-% of ethane, propane, n-butane or hydrogen on laminar flame speed and knock behavior. To quantify these influences, reaction kinetics calculations are carried out in a wide range of the engine operation conditions. Obtained results are used to update and extend existing sub-models. The model quality is validated by comparing measured burn rates with simulation results. The benefit of the new sub-models are utilized by predicting the influence the fuel takes on engine operating limits in terms of knocking and lean misfire limits, the latter being determined by using a cycle-to-cycle variation model.
Journal Article

In-Situ Measurements of the Piston and Connecting Rod Dynamics Correlated with TEHL-Simulation Techniques

2017-09-04
2017-24-0157
High combustion pressure in combination with high pressure gradient, as they e.g. can be evoked by high efficient combustion systems and e.g. by alternative fuels, acts as broadband excitation force which stimulates natural vibrations of piston, connecting rod and crankshaft during engine operation. Starting from the combustion chamber the assembly of piston, connecting rod and crankshaft and the main bearings represent the system of internal vibration transfer. To generate exact input and validation values for simulation models of structural dynamic and elasto-hydrodynamic coupled multi-body systems, experimental investigations are done. These are carried out on a 1.5-l inline four cylinder Euro 6 Diesel engine. The modal behaviour of the system was examined in detail in simulation and test as a basis for the investigations. In an anechoic test bench airborne and structure-borne noises and combustion pressure are measured to identify the engine´s vibrational behaviour.
Technical Paper

Improvement of a High-Performance CNG-Engine Based on an innovative Virtual Development Process

2011-09-11
2011-24-0140
Methane as an alternative fuel in motorsports? Actually this solution is well known for the reduction of CO₂ emissions but apparently it does not really awake race feelings. At the 2009 edition of the 24-hour endurance race on the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by innovative turbo-charged CNG engines for the first time. The aim was to prove, that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued also in 2010, this time exclusively with CNG vehicles. Focusing on the CO₂ emission, reclusively the higher hydrogen content of methane which represents the main component of NG leads to a CO₂ reduction during the combustion of about 20% compared to gasoline.
X