Refine Your Search

Topic

Search Results

Standard

Vehicle Hood Latch Systems

1982-07-01
HISTORICAL
J362_198207
This SAE Recommended Practice establishes uniform test procedures for evaluating vehicle hood latch systems. It specifically pertains to those latch systems on hoods, which when the hood is fully opened (assuming the absence of hood stops) extend at any point above a horizontal plane through the uppermost edge of the steering wheel in the straight ahead driving position with the vehicle in a horizontal position. The following optional tests are described. a Vehicle Performance Tests—On-the-road evaluation under an established pattern of vehicle driving situations. b Laboratory Dynamic Tests—Dynamic simulation in the laboratory of the loads and forces which the latch system encounters on the road. c Laboratory Static Tests—Simplified test procedures intended to permit static simulation of the loads which road tests have indicated the latch system may encounter. The test procedures outlined in this recommended practice are based on current engineering test methods.
Standard

VEHICLE HOOD LATCH SYSTEMS

1969-01-01
HISTORICAL
J362_196901
This SAE Recommended Practice establishes uniform test procedures for evaluating vehicle hood latch systems. It specifically pertains to those latch systems on hoods, which when the hood is fully opened (assuming the absence of hood stops) extend at any point above a horizontal plane through the uppermost edge of the steering wheel in the straight ahead driving position with the vehicle in a horizontal position. The following optional tests are described. (a) Vehicle Performance Tests—On-the-road evaluation under an established pattern of vehicle driving situations. (b) Laboratory Dynamic Tests—Dynamic simulation in the laboratory of the loads and forces which the latch system encounters on the road. (c) Laboratory Static Tests—Simplified test procedures intended to permit static simulation of the loads which road tests have indicated the latch system may encounter. The test procedures outlined in this recommended practice are based on current engineering test methods.
Standard

UNIVERSAL SYMBOLS FOR OPERATOR CONTROLS—SAE J1500 JUN80

1980-06-01
HISTORICAL
J1500_198006
This standard is to delineate the symbols used to identify controls, indicators, and tell-tales for automotive vehicles, trucks, off-the-road vehicles, construction equipment, industrial and recreational transportation and is for reference purposes only. The symbol application is to be found within the appropriate standards listed. Approved by AMERICAN NATIONAL STANDARDS INSTITUTE February 22, 1983 An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.
Standard

UNIVERSAL SYMBOLS FOR OPERATOR CONTROLS

1986-10-01
HISTORICAL
J1500_198610
This standard is to delineate the symbols used to identify controls, indicators, and tell-tales for automotive vehicles, trucks, off-the-road vehicles, construction equipment, industrial and recreational transportation and is for reference purposes only. The symbol application is to be found within the appropriate standards listed.
Standard

UNIVERSAL SYMBOLS FOR OPERATOR CONTROLS

1986-07-01
HISTORICAL
J1500_198607
This standard is to delineate the symbols used to identify controls, indicators, and tell-tales for automotive vehicles, trucks, off-the-road vehicles, construction equipment, industrial and recreational transportation and is for reference purposes only. The symbol application is to be found within the appropriate standards listed.
Standard

The Effects of Front-mounted Accessories on Air Bag Sensors and Crashworthiness

1997-10-01
HISTORICAL
J2431_199710
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

The Effects of Front-Mounted Accessories on Air Bag Sensors and Crashworthiness

2019-10-09
CURRENT
J2431_201910
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

Seat Belt Restraint System Hardware - Glossary of Terms

2022-07-08
CURRENT
J1803_202207
This SAE Recommended Practice provides a Glossary of Terms commonly used to describe Seat Belt Restraint Systems Hardware and their function. These terms are currently defined in various SAE Recommended Practices but are sometimes inconsistent. It is intended for this document to supersede the definitions found in separate SAE Recommended Practices.
Standard

Seat Belt Restraint System Hardware - Glossary of Terms

2013-01-08
HISTORICAL
J1803_201301
This SAE Recommended Practice provides a Glossary of Terms commonly used to describe Seat Belt Restraint Systems Hardware and their function. These terms are currently defined in various SAE Recommended Practices but are sometimes inconsistent. It is intended for this document to supersede the definitions found in separate SAE Recommended Practices.
Standard

Seat Belt Hardware Webbing Abrasion Test Procedure

2013-06-11
CURRENT
J339_201306
This SAE Recommended Practice describes a test procedure for evaluating the abrasion resistance characteristics of webbing when used in hardware of seat belt assemblies such as those described in SAE J140.
Standard

Seat Belt Hardware Webbing Abrasion Performance Requirements

2013-06-11
CURRENT
J114_201306
This SAE Recommended Practice describes the performance requirements for abrasion resistance of webbing when used in adjustment hardware normally used to adjust the length of seat belt assemblies such as those described in SAE J140. These requirements are applicable to tests conducted according to the procedure described in SAE J339. Although adjustment hardware is normally the primary source of webbing abrasion in a seat belt assembly, consideration should be given to other areas of normal webbing contact in the restraint system that may provide a more severe condition of webbing abrasion.
Standard

Seat Belt Hardware Test Procedures

2013-02-13
HISTORICAL
J140_201302
This SAE Recommended Practice describes test procedures for evaluating hardware used in motor vehicle seat belt assemblies. Related hardware performance requirements are described in SAE J141. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
Standard

Seat Belt Hardware Test Procedures

2022-07-08
CURRENT
J140_202207
This SAE Recommended Practice describes test procedures for evaluating hardware used in motor vehicle seat belt assemblies. Related hardware performance requirements are described in SAE J141. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
Standard

Seat Belt Hardware Performance Requirements

2022-07-08
CURRENT
J141_202207
This SAE Recommended Practice describes performance requirements for hardware used in motor vehicle seat belt assemblies when tested in accordance with the test procedures specified in SAE J140. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
Standard

Seat Belt Hardware Performance Requirements

2013-02-13
HISTORICAL
J141_201302
This SAE Recommended Practice describes performance requirements for hardware used in motor vehicle seat belt assemblies when tested in accordance with the test procedures specified in SAE J140. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
Standard

Recommended Practice for Optimizing Automobile Damageability and Repairability

2016-02-03
HISTORICAL
J1555_201602
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
Standard

Recommended Practice for Optimizing Automobile Damageability and Repairability

2019-10-24
CURRENT
J1555_201910
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
Standard

Recommended Design and Performance Standard for Seats with Integrated Lap and Shoulder Restraints

2012-09-12
CURRENT
J2287_201209
This SAE Recommended Practice defines minimum performance standards, qualification requirements, and minimum documentation requirements for Integrated Lap and Shoulder Restraint (to) equipped Seats (IL&SRTS). The goal is to achieve comfort, durability, and occupant protection under expected and foreseeable normal operation loads. The document attempts to define test and evaluation criteria to demonstrate performance at peak operational loads, while attempting to maintain the seat’s ability to meet loads set forth in FMVSS 207, 210, and ECE 14, 16, and 17. This document also provides guidance for design by enumerating certain design goals to enhance comfort, serviceability, and safety. Guidance for test procedures, measurements, equipment, and interpretation of results may be presented to promote uniform techniques and to achieve acceptable data.
Standard

Performance Engine Building Recommended Practices

2019-10-03
CURRENT
J2379_201910
This SAE Recommended Practice applies to the function of building reciprocating spark-ignition engines which are used in conjunction with standard and high-performance ancillary components in applications intended to achieve a minimum of 1 hp/in3. This document does not apply to rebuilt engines which may only be partially repaired with little or no machining, nor does it apply to second-hand or used engines.
Standard

Performance Engine Building Recommended Practices

1997-08-01
HISTORICAL
J2379_199708
This SAE Recommended Practice applies to the function of building reciprocating spark-ignition engines which are used in conjunction with standard and high-performance ancillary components in applications intended to achieve a minimum of 1 hp/in3. This document does not apply to rebuilt engines which may only be partially repaired with little or no machining, nor does it apply to second-hand or used engines.
X