Refine Your Search

Topic

Author

Search Results

Technical Paper

Vegetable Oils as Alternative Diesel Fuels: Degradation of Pure Triglycerides During the Precombustion Phase in a Reactor Simulating a Diesel Engine

1992-02-01
920194
Vegetable oils are candidates for alternative fuels in diesel engines. These oils, such as soybean, sunflower, rapeseed, cottonseed, and peanut, consist of various triglycerides. The chemistry of the degradation of vegetable oils when used as alternate diesel fuels thus corresponds to that of triglycerides. To study the chemistry occurring during the precombustion phase of a vegetable oil injected into a diesel engine, a reactor simulating a diesel engine was constructed. Pure triglycerides were injected into the reactor in order to determine differences in the precombustion behavior of the various triglycerides. The reactor allowed motion pictures to be prepared of the injection event as the important reaction parameters, such as pressure, temperature, and atmosphere were varied. Furthermore, samples of the degradation products of precombusted triglycerides were collected and analyzed (gas chromatography / mass spectrometry).
Technical Paper

The Use of Hybrid Fuel in a Single-Cylinder Diesel Engine

1980-10-01
801380
Hybrids are fuels derived from combinations of different energy sources and which are generally formulated as solutions, emulsions, or slurries. The underlying objective of this program is to reduce the use of petroleum-derived fuels and/or to minimize the processing requirements of the finished hybrid fuels. Several hybrid fuel formulations have been developed and tested in a direct injection single-cylinder diesel engine. The formulations included solutions of ethanol and vegetable oils in diesel fuel, emulsions of methanol and of ethanol in diesel fuel; and slurries of starch, cellulose, and “carbon” in diesel fuel. Based on the progress to date, the solutions and emulsions appear to be viable diesel engine fuels if the economic factors are favorable and the storage and handling problems are not too severe. The slurries, on the other hand, are not to the same point of development as the solutions and emulsions.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

The Effects of Fuel Properties and Composition on Diesel Engine Exhaust Emissions - A Review

1981-09-01
810953
Due to the cost and mobility advantages of diesel-powered mine vehicles over electric vehicles, it is anticipated that the diesel engine will become more widely used in underground mines in this country. Concern has arisen, however, over the impact of diesel exhaust emissions on the air quality in the underground mine environment. A literature search has been conducted to identify known effects of fuel properties on the reduction of diesel exhaust emissions. Reductions can be obtained by optimizing fuel properties and by considering alternative fuels to standard diesel fuel. However, the data base is relatively small and the results highly dependent on engine type and operating conditions. Engine studies on a typical mine diesel are necessary to draw quantitative conclusions regarding the reduction of emissions, especially particulates and NO2 which have not been generally addressed in previous studies.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

1994-03-01
941018
Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Partial Pre-Mixed Combustion with Cooled and Uncooled EGR in a Heavy-Duty Diesel Engine

2002-03-04
2002-01-0963
An experimental investigation of the effects of partial premixed charge compression ignition (PCCI) combustion and EGR temperature was conducted on a Caterpillar C-12 heavy-duty diesel engine (HDDE). The addition of EGR and PCCI combustion resulted in significant NOx reductions over the AVL 8-mode test. The lowest weighted BSNOx achieved was 2.55 g/kW-hr (1.90 g/hp-hr) using cooled EGR and 20% port fuel injection (PFI). This represents a 54% reduction compared to the stock engine. BSHC and BSCO emissions increased by a factor of 8 and 10, respectively, compared to the stock engine. BSFC also increased by 7.7%. In general, BSHC, BSCO, BSPM, and BSFC increased linearly with the amount of port-injected fuel.
Journal Article

Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion

2009-11-02
2009-01-2699
The effects of spray targeting on mixing, combustion, and pollutant formation under a low-load, late-injection, low-temperature combustion (LTC) diesel operating condition are investigated by optical engine measurements and multi-dimensional modeling. Three common spray-targeting strategies are examined: conventional piston-bowl-wall targeting (152° included angle); narrow-angle floor targeting (124° included angle); and wide-angle piston-bowl-lip targeting (160° included angle). Planar laser-induced fluorescence diagnostics in a heavy-duty direct-injection optical diesel engine provide two-dimensional images of fuel-vapor, low-temperature ignition (H2CO), high-temperature ignition (OH) and soot-formation species (PAH) to characterize the LTC combustion process.
Technical Paper

On-Board Fuel Property Classifier for Fuel Property Adaptive Engine Control System

2006-04-03
2006-01-0054
This paper explores the possibility of on-board fuel classification for fuel property adaptive compression-ignition engine control system. The fuel classifier is designed to on-board classify the fuel that a diesel engine is running, including alternative and renewable fuels such as bio-diesel. Based on this classification, the key fuel properties are provided to the engine control system for optimal control of in-cylinder combustion and exhaust treatment system management with respect to the fuel. The fuel classifier employs engine input-output response characteristics measured from standard engine sensors to classify the fuel. For proof-of-concept purposes, engine input-output responses were measured for three different fuels at three different engine operating conditions. Two neural-network-based fuel classifiers were developed for different classification scenarios. Of the three engine operating conditions tested, two conditions were selected for the fuel classifier to be active.
Technical Paper

On the Correlation between NOx Emissions and the Diesel Premixed Burn

2004-03-08
2004-01-1401
It is generally accepted that exhaust NOX emissions of diesel engines increase with the degree of premixed burning. Although several mechanisms proposed in the literature are likely responsible for some aspects of the correlation, taken together, they cannot explain all observations of this correlation. In this study, thermodynamic analyses and optical/imaging diagnostics were employed in an optically-accessible, heavy-duty DI diesel engine to examine the in-cylinder mechanisms by which fuel/air premixing affects engine-out NOX emissions. Exhaust NO and NOX emissions were measured and correlated with observations of soot luminosity and jet penetration as the intake-temperature and injection timing were varied. The engine was operated at low-load conditions, for which the premixed burn was a significant fraction of the total heat released.
Technical Paper

Nox Control in Heavy-Duty Diesel Engines - What is the Limit?

1998-02-23
980174
Methods to reduce direct injected diesel engine emissions in the combustion chamber will be discussed in this paper. The following NOx emission reduction technologies will be reviewed: charge air chilling, water injection, and exhaust gas recirculation (EGR). Emphasis will be placed on the development of an EGR system and the effect of EGR on NOx and particulates. The lower limit of NOx that can be obtained using conventional diesel engine combustion will be discussed. Further reductions in NOx may require changing the combustion process from a diffusion flame to a homogeneous charge combustion system.
Technical Paper

Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2006-04-03
2006-01-0079
In-cylinder spray, mixing, combustion, and pollutant-formation processes for low-load (4 bar IMEP), low-temperature combustion conditions (12.7% charge oxygen, ∼2170 K stoichiometric adiabatic flame temperature) with early fuel injection (SOI=-22° ATDC) at two different charge densities (naturally aspirated, 1.34 bar abs. boost) were studied in an optical heavy-duty diesel engine using simultaneous pairings of multiple laser/imaging diagnostics. Laser-elastic/Mie scattering showed liquid-fuel penetration, fuel fluorescence indicated the leading edge of the vapor jet, chemiluminescence imaging showed the location of ignition, OH fluorescence probed the hot second-stage combustion, and soot luminosity and soot laser-induced incandescence measured development of in-cylinder soot.
Technical Paper

Measurements of the Influence of Soot Radiation on In-Cylinder Temperatures and Exhaust NOx in a Heavy-Duty DI Diesel Engine

2005-04-11
2005-01-0925
It is generally accepted that thermal (Zeldo'vich) chemical kinetics dominate NO formation in diesel engines, so control of temperature is critical for reducing exhaust NOx emissions. Recent optical engine data revealed that when the start of injection (SOI) was retarded to very late timings, combustion luminosity decreased while exhaust NOx emissions increased, causing a “NOx bump.” This data suggested that changes in radiative heat transfer from soot may affect in-cylinder temperatures and subsequent NOx formation. In this study, soot thermometry measurements of in-cylinder temperature and radiative heat transfer were correlated with exhaust NOx to quantify the role of radiative heat transfer on in-cylinder temperatures and NOx formation. The engine was operated at low-load conditions, for which the premixed burn was a significant fraction of the total heat release.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

1994-10-01
941918
High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

1994-10-01
941919
Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Journal Article

Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine

2015-09-01
2015-01-1830
Non-conventional operating conditions and fuels in diesel engines can produce longer ignition delays compared to conventional diesel combustion. If those extended delays are longer than the injection duration, the ignition and combustion progress can be significantly influenced by the transient following the end of injection (EOI), and especially by the modification of the mixture field. The objective of this paper is to assess how those long ignition delays, obtained by injecting at low in-cylinder temperatures (e.g., 760-800K), are affected by EOI. Two multi-hole diesel fuel injectors with either six 0.20mm orifices or seven 0.14mm orifices have been used in a 2.34L single-cylinder optical diesel engine. We consider a range of ambient top dead center (TDC) temperatures at the start of injection from 760-1000K as well as a range of injection durations from 0.5ms to 3.1ms. Ignition delays are computed through the analysis of both cylinder pressure and chemiluminescence imaging.
Technical Paper

In-Cylinder and Exhaust Soot in Low-Temperature Combustion Using a Wide-Range of EGR in a Heavy-Duty Diesel Engine

2007-10-29
2007-01-4017
In-cylinder and exhaust soot mass were measured in an optically accessible heavy duty diesel engine under various intake oxygen concentrations from 8 vol% to 21 vol% to gain insight into soot formation and destruction processes. Exhaust-gas recirculation (EGR) in the optical engine was simulated by dilution of intake gases with nitrogen. In-cylinder soot, measured by 2-color optical pyrometry, was compared to engine-out soot, measured by a commercial optical smoke meter. Each EGR rate was studied under two separate fueling conditions: (i) constant injection duration, and (ii) constant global equivalence ratio. The in-cylinder and exhaust soot measurements of the current study agree well with findings of previous studies in the literature. Under both fueling conditions, in-cylinder soot temperatures decreased with the reduction of in-cylinder oxygen concentration.
Technical Paper

Ignition Delay as Determined in a Variable-Compression Ratio Direct-Injection Diesel Engine

1987-11-01
872036
A variable-compression ratio, direct-injection diesel engine (VCR) has been designed and assembled at Southwest Research Institute with the intention of examining the current procedures for rating the ignition quality of diesel fuels and the meaning of ignition delay as an indicator of ignition and combustion quality. Using a slightly modified ASTM D 613 procedure, the engine has been used to rate the ignition quality of 43 different test fuels. The ratings obtained in the VCR engine are compared to the corresponding rating obtained using the standard cetane rating procedure. Some of the problems associated with the standard procedure became apparent during these experiments. The experimental results are discussed in terms of the problems and the advantages of a proposed VCR-based rating procedure.
Technical Paper

Identification of Chemical Changes Occurring During the Transient Injection of Selected Vegetable Oils

1993-03-01
930933
Four different vegetable oils, degummed soybean, once refined cottonseed, peanut and sunflower oils, were injected into a high-pressure, high-temperature environment of nitrogen. The environment was controlled to resemble, thermodynamically, conditions present in a diesel engine at the time of fuel injection. Samples were removed from the sprays of these oils while they were being injected. A sonic, water-cooled probe and a cold trap were used to collect the samples. Chemical analyses of the samples indicated that significant chemical changes occur in the oils during the injection process. The major change is the formation of low-molecular weight compounds from the C18:2 and C18:3 fatty acids.
Technical Paper

Homogeneous Charge Compression Ignition of Diesel Fuel

1996-05-01
961160
A single-cylinder, direct-injection diesel engine was modified to operate on compression ignition of homogenous mixtures of diesel fuel and air. Previous work has indicated that extremely low emissions and high efficiencies are possible if ignition of homogeneous fuel-air mixtures is accomplished. The limitations of this approach were reported to be misfire and knock. These same observations were verified in the current work. The variables examined in this study included air-fuel ratio, compression ratio, fresh intake air temperature, exhaust gas recirculation rate, and intake mixture temperatures. The results suggested that controlled homogeneous charge compression ignition (HCCI) is possible. Compression ratio, EGR rate, and air fuel ratio are the practical controlling factors in achieving satisfactory operation. It was found that satisfactory power settings are possible with high EGR rates and stoichiometric fuel-air mixtures.
X