Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee

1999-03-01
1999-01-0121
This paper discusses the development of the 1997 Jeep Cherokee model for the National Advanced Driving Simulator's planned vehicle dynamics software, NADSdyna. Recursive rigid body formalism called the Real Time Recursive Dynamics (RTRD) developed by the University of Iowa is used to model the front and rear suspension mechanisms. To complement vehicle dynamics for simulator applications, subsystems that include tires, aerodynamics, powertrain, brake, and steering are added to the rigid body dynamics model. These models provide high fidelity driving realism to simulate severe handling maneuvers in real time. The soundness of the model does not only depend on the mathematics of the model, but also on the validity of the parameters. Therefore, this paper discusses thoroughly the methodology of parameters estimation. A generic model of cruise control is included.
Technical Paper

Validation of a Roll Simulator for Recreational Off-Highway Vehicles

2012-04-16
2012-01-0241
A two-degree-of-freedom Roll Simulator has been developed to study the occupant kinematics of Recreational Off-Highway Vehicles (ROVs). To validate the roll simulator, test data was collected on a population of ROVs on the market today. J-turn maneuvers were performed to find the minimum energy limits required to tip up the vehicles. Two sets of tests were performed: for the first set, 10 vehicles were tested, where the motion was limited by safety outriggers to 10-15 degrees of roll; and for the second set, three of these vehicles were re-tested with outriggers removed and the vehicle motion allowed to reach 90 degrees of roll. These quarter-turn rollover tests were performed autonomously using an Automatic Steering Controller (ASC) and a Brake and Throttle Robot (BTR). Lateral and longitudinal accelerations as well as roll rate and roll angle were recorded for all tests.
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
Technical Paper

The Impact of Worn Shocks on Vehicle Handling and Stability

2006-04-03
2006-01-0563
The intent of this research is to understand the effects worn dampers have on vehicle stability and safety through dynamic model simulation. Dampers, an integral component of a vehicle's suspension system, play an important role in isolating road disturbances from the driver by controlling the motions of the sprung and unsprung masses. This paper will show that a decrease in damping leads to excessive body motions and a potentially unstable vehicle. The concept of poor damping affecting vehicle stability is well established through linear models. The next step is to extend this concept for non-linear models. This is accomplished through creating a vehicle simulation model and executing several driving maneuvers with various damper characteristics. The damper models used in this study are based on splines representing peak force versus velocity relationships.
Technical Paper

Suspension Testing on the New-Type Suspension Parameter Measurement Device

1992-02-01
920049
The purpose of this paper is to give a description of using the new type Suspension Parameter Measurement Device. The design philosophy and specifications are elaborated on in another SAE paper entitled “Design of a New-Type Suspension Parameter Measurement Device”. The importance of using this new machine will be addressed in this paper. Because of the ease of use for this new device, testing can be accomplished in hours. To check repeatability, repeat testing can be done in a short period of time. This rapid testing is the main advantage of the new generation of SPMD's. The new SPMD collects raw data from transducers. All data are stored in the computer. Some are used directly to generate graphic outputs. Some are utilized to calculate wanted parameters. Graphs are generated so that some characteristics can be scrutinized. Parameters can be presented either by points or by cross plotting in graphs.
Technical Paper

Sub-System and Full System Testing to Assess Side Impact Safety

1983-02-01
830465
A study is being conducted in which both component level and full scale crash tests are being compared. This report documents the approach selected for component level testing and the matrix selected for full scale crash testing. The hardware that was fabricated to conduct the component tests is shown and discussed. The component test results to date are discussed as to repeatability, durability and ability to discriminate between levels of safety.
Technical Paper

Simplified MADYMO Model of the IHRA Head-form Impactor

2006-07-04
2006-01-2349
Interest in pedestrian head injury has prompted a need to measure the potential of head injury resulting from vehicular impacts. A variety of head impactors have been developed to fulfill this measurement need. A protocol has been developed by the International Harmonization Research Activity (IHRA) to use head impactor measurements to predict head injury. However, the effect of certain characteristics of the various head impactors on the measurement procedure is not well understood. This includes the location of the accelerometers within the head-form and testing the head-form under the variety of conditions necessary to establish its global performance. To address this problem, a simple model of the IHRA head-form has been developed. This model was created using MADYMO© and consists of a solid sphere with a second sphere representing the vinyl covering. Stiffness and damping characteristics of the vinyl covering were determined analytically from drop test data of an IHRA head-form.
Technical Paper

Review of Pedestrian Safety Research in the United States

1989-02-01
890757
Pedestrian vehicle accidents account for a considerable proportion of all automobile related injuries and deaths each year. Due to the large difference in mass between the pedestrian and the vehicle, pedestrian injury reduction is a formidable task. In spite of these difficulties, world attention is beginning to focus on pedestrian injuries and methods to quantitatively evaluate a vehicle for its pedestrian injury potential. This paper reviews the status of work in the United States on devices and methods for measuring pedestrian impact response. Where data is available test device response is summarized. The state of pedestrian accident research is also reviewed in the light of national and International interest in reducing pedestrian injuries.
Technical Paper

Response of Brake Light Filaments to Impact

1988-01-29
880234
Taillight lamp filaments provide valuable information on their illumination status during a collision. This information is contained in the shape of filament deformation, extent and nature of filament fracture, and filament oxidation. The degree of deformation of these filaments, a quantity which may be useful in determining velocities prior to impact, has been documented for headlights but has not been closely examined for taillights. In this paper, a study of the quantification of automobile taillight filament response when subjected to low speed impacts is presented. These studies include two different brands, five velocities up to approximately 19 miles per hour, three filament orientations, and two different deceleration pulses. Recommendations are given for further study in order to provide sufficient data for practical application and use in accident reconstruction.
Technical Paper

Reconstruction of Real World Pedestrian Impact

1986-02-24
860210
This paper presents a pedestrian head impact reconstruction methodology as an initial mitigating response to this need for pedestrian protection. This methodology which is based on preliminary testing results is illustrated with a real world case example from the Pedestrian Accident Investigation Data Support (PAIDS) Study. This PAIDS study provides documentation of medical reports, vehicle impact speeds, photographs and a dent profile of the vehicle damage. The pedestrian head impact damage from this real-world case is reproduced in a comparison vehicle with a rigid pneumatic impactor developed for the National Highway Traffic Safety Administration. The physical reconstruction results are then compared to the actual accident damage and conclusions are rendered.
Technical Paper

Perception/Reaction Time Values for Accident Reconstruction

1989-02-01
890732
Field literature in testing and experimentation on general human perception and reaction times, was reviewed to better address questions on the parameters of driving performance. Brake reaction time studies and driver visual search studies were reviewed with attendant material on the effects of aging, intoxication and fatigue. A short examination is made on the degree of increase in “surprise intrusion” event upper values from simple human basic reaction time testing to a real-time pedestrian crossing event in real-world urban driving. These upper range values began at 0.78 second in the laboratory environment and became 2.50 seconds on an urban street in real-time.
Technical Paper

Parameter Measurement and Development of a NADSdyna Validation Data Set for a 1994 Ford Taurus

1997-02-24
970564
This paper discusses the development of a 1994 Ford Taurus vehicle model for the National Advanced Driving Simulator's planned vehicle dynamics simulation, NADSdyna. The front and rear suspensions of the Taurus are modeled using recursive rigid body dynamics formulations. To complement vehicle dynamics, subsystems models that include steering, braking, and tire forces are included. These models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation. The realism of a particular formulation depend heavily on how the parameters are obtained from the physical system. Therefore, the development of a data set for a particular model is as important as the model itself. The methodology for generating the Taurus data set is presented. The power train model is not yet included, so the simulation is run with the vehicle either at constant speed or decelerating.
Technical Paper

On the Optimum Design of Composite Roof Structures

1989-02-01
890548
The roof structures of light utility vehicles are often comprised of a single composite shell without the usual steel or aluminum frames found on conventional passenger automobiles. This study analyzes the geometry of such structures in relation to their performance during rollover accident and roof intrusion. For a given set of material properties and roof impact velocity, their exists an optimum value of roof stiffness that would minimize the impact energy, manifested in a rollover accident, that would be transmitted to the occupant compartment. This work shows the effects of various geometric parameters on the amount of elastic strain energy that can be absorbed during deformation of the rooftop. The optimum roof geometry was determined to minimize the possibility of, if not the severity of, occupant injury.
Technical Paper

Modeling, Simulation and Design Space Exploration of a MTV 5.0 Ton Cargo Truck in MSC-ADAMS

2005-04-11
2005-01-0938
This paper presents the results of a design space exploration based on the simulations of the MTV (Medium Tactical Vehicle) 5.0 Ton Cargo Truck using MSC-ADAMS (Automatic Dynamic Analysis of Mechanical System). Design space study is conducted using ADAMS/Car and ADAMS/Insight to consider parametric design changes in suspension and the tires of the cargo truck. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) for the modeling of the cargo truck and a flexible optimization architecture to explore the design space. This research is a part of the work done for the U.S. Army TACOM (Tank Automotive and Armaments Command) at the Center for Automotive Research, The Ohio State University.
Technical Paper

Modeling of Dynamic Characteristics of Tire Lateral and Longitudinal Force Responses to Dynamic Inputs

1995-02-01
950314
This paper presents the development of a tire model for use in the simulation of vehicle dynamics. The model was developed to predict tire lateral and longitudinal force responses to dynamic inputs. In this new tire model, the contact patch of a tire is lumped into a number of elements to study the dynamic behavior of the displacement of the tire contact patch in the lateral and longitudinal directions. For each displacement, a differential equation governing the dynamic behavior of the displacement to the dynamic inputs is derived. Based on the differential equations for the lateral and longitudinal displacements, difference equations are derived for the purpose of simulating tire output responses. Since system parameters, such as mass, damping and stiffness, in the difference equations are unknown, estimation of system parameters is performed using the differential equations and experimental data measured for this research.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Longitudinal Suspension Compliance Modeling with ADAMS

1993-03-01
930764
Multi-body simulations are very powerful tools in the modeling of dynamic mechanical systems. This study uses the multi-body simulation program ADAMS to analyze a light vehicle suspension. The paper introduces ADAMS modeling concepts and then applies them in a case study examining the effects of additional longitudinal compliance on the ride and handling behavior of a 1/4 car suspension model. The results were a marginal increase in the lateral stiffness of the vehicle, approximately the same ride performance, and an increase in the compliance steering angle.
Technical Paper

Lateral Stiffness, Cornering Stiffness and Relaxation Length of the Pneumatic Tire

1990-02-01
900129
This paper describes an experimental program of tire research used to quantify the concept of the “relaxation length” of the fully rolling, steered tire. Two methods of developing lateral force are compared for the general car with the result that a first-order differential equation is obtained from which the change is lateral force with time, or distance, as the steer angle variation is computed.
X