Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Characteristics of Scavenging Flow in a Poppet-Valve Type 2-Stroke Diesel Engine by Using RSSV System

1996-02-01
960368
Optimization study is performed for the scavenging process as the first step for the development of a poppet-valve type automotive two-stroke diesel engine. The scavenging flow pattern is varied by the RSSV (rotatable shrouded scavenging valve) system, which was designed for application of a shroud valve to an actual engine. The scavenging flow is analyzed by flow visualization and numerical calculations under a steady condition. Water is used as the working fluid, instead of air for effective visualization of the flow pattern in the flow visualization study. More details in the scavenging characteristics are observed by a dye experiment, in which the dye path indicates the flow streamline in the cylinder. In the numerical study, three-dimensional flows are calculated by a modified version of KIVA-2 code, with a special technique to consider the valve and shroud shapes.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
X