Refine Your Search

Topic

Search Results

Standard

WROUGHT COPPER AND COPPER ALLOYS

1976-06-01
HISTORICAL
J463D_197606
This standard* describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Selection and Use of Steels

2012-03-12
CURRENT
J401_201203
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
Standard

Potential Standard Steels

2023-06-06
CURRENT
J1081_202306
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
Standard

Penetrating Radiation Inspection

2018-01-09
CURRENT
J427_201801
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

PENETRATING RADIATION INSPECTION

1991-03-01
HISTORICAL
J427_199103
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

OIL TEMPERED CHROMIUM-VANADIUM VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J132_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of oil tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the basic material and processing requirements of spring fabricated from this wire.
Standard

OIL TEMPERED CARBON STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J351_198812
This specification covers the physical and chemical requirements of oil tempered carbon steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This specification also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

NONDESTRUCTIVE TESTS

1991-02-01
HISTORICAL
J358_199102
Nondestructive tests are those tests which detect factors related to the serviceability or quality of a part or material without limiting its usefulness. Material defects such as surface cracks, laps, pits, internal inclusions, bursts, shrink, seam, hot tears, and composition analysis can be detected. Sometimes their dimensions and exact location can be determined. Such tests can usually be made rapidly. Processing results such as hardness, case depth, wall thickness, ductility, decarburization, cracks, apparent tensile strength, grain size, and lack of weld penetration or fusion may be detectable and measurable. Service results such as corrosion and fatigue cracking may be detected and measured by nondestructive test methods. In many cases, imperfections can be automatically detected so that parts or materials can be classified.
Standard

MUSIC STEEL SPRING WIRE AND SPRINGS

1994-06-01
HISTORICAL
J178_199406
This SAE Recommended Practice covers a high quality, hard-drawn, steel spring wire, uniform in mechanical properties, intended for the manufacturer of spring and wire forms subjected to high stresses or requiring good fatigue properties. It also covers processing requirements of springs fabricated from this wire.
Standard

MUSIC STEEL SPRING WIRE AND SPRINGS

1988-12-01
HISTORICAL
J178_198812
This SAE Recommended Practice covers a high quality, hard drawn, steel spring wire, uniform in mechanical properties, intended for the manufacturer of spring and wire forms subjected to high stresses or requiring good fatigue properties. It covers basic materials and processing requirements of springs and form fabricated therefrom.
Standard

Infrared Testing

2018-01-09
CURRENT
J359_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of infrared techniques for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of infrared testing and as a guide to more extensive references.
Standard

INFRARED TESTING

1991-02-01
HISTORICAL
J359_199102
The scope of this SAE Information Report is to provide general information relative to the nature and use of infrared techniques for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of infrared testing and as a guide to more extensive references.
Standard

High-Strength Carbon and Alloy Die Drawn Steels

2009-11-24
CURRENT
J935_200911
This SAE Recommended Practice is intended to provide basic information on properties and characteristics of high-strength carbon and alloy steels which have been subjected to special die drawing. This includes both cold drawing with heavier-than-normal drafts and die drawing at elevated temperatures.
Standard

HARD DRAWN CARBON STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J172_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of the best quality hard drawn carbon steel spring wire used for the manufacture of engine valve springs and other springs requiring high fatigue properties. It also covers the basic material and processing requirements of springs fabricated from this wire.
X