Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 14536
Technical Paper

“SODART” Telescope Silicon Detector Cooling System (Thermal Test Results of the Scale-Down Model)

1992-07-01
921365
The onboard “SODART” telescope silicon detector cooling system of the “Spectrum-X-Gamma” observatory, which is designed for the space objects X-ray radiation study, is described. The scale-down model of the passive cooling system description and thermal vacuum test results of this model are given. In the real cooling system the minimal detector temperature at 300 mW heat release is expected about 107 K.
Technical Paper

“Jet Air” Compressor Control System

1971-02-01
710203
This paper describes the interrelated controls for automatic start sequencing, fuel scheduling, customer air delivery, and supervisory and protective systems as applied to the Curtiss-Wright CW657E “Jet-Air” Compressor. Model CW657E is capable of delivering 15,000 SCFM air at 85 psig (at 30°F and sea level pressure) and may be used in a diversity of manufacturing, processing, and industrial applications. A description of the control system and its operation in relation to compressor requirements, while furnishing air to feed distribution lines to air assisted water atomizing nozzles for snow making is reviewed as an example. Other models can deliver up to 30,000 SCFM with modified control systems, including pressure controls.
Technical Paper

“Fatigue Behavior of Sheet Steels for Automotive Industry”

1992-11-01
921439
Carbon and rephosphorized pre-strained sheet steels for cold drawing forming operations were studied and the tensile, high cycle fatigue and fatigue crack propagation properties were determined. The fatigue limit was found to be higher for 20% than for 1% pre-strained condition. Threshold stress intensity factors (▵Ků) of 5.29 MPa. m1/2 for rephosphorized steel and 7.07 MPa. m1/2 for carbon steel. Critical crack lenghts were calculated by ▵Ků and fatigue limit data using the Lukas-Klesnil short-crack criterion. Through fractographic analysis it was possible to determine the general behavior of tested materials near threshold.
Technical Paper

“FEV’s ‘CogniSafe’: An Innovative Deep Learning-Based AI Driver Monitoring System for the Future of Mobility”

2024-04-09
2024-01-2012
Driver state monitoring is a crucial technology for enhancing road safety and preventing human error-caused accidents in the era of autonomous vehicles. This paper presents CogniSafe, a comprehensive driver monitoring system that uses deep learning and computer vision methods to detect various types of driver distractions and fatigue. CogniSafe consists of four modules: Driver anomaly detection and classification: A novel two-phase network that proposes and recognizes driver anomalies, such as texting, drinking, and adjusting radios, using multimodal and multiview input. Gaze estimation: A video-based neural network that jointly learns head pose and gaze dynamics, achieving robust and efficient gaze estimation across different head poses. Eye state analysis: A multi-tasking CNN that encodes features from both eye and mouth regions, predicting the percentage of eye closure (PERCLOS) and the frequency of mouth opening (FOM).
Technical Paper

“Aluminium Hot Forming: - Opportunities and Challenges in Automotive Light Weighting”

2023-05-25
2023-28-1304
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming.
Technical Paper

‘A Comparative Study of the Integrity of Joints Between Multilayer Fuel Line Constructions and Different Connector ‘Barb’ Designs

2000-03-06
2000-01-1098
With the advent of low evaporative emission requirements there has been the rapid adoption of multilayer extrusion technology into the production of Fuel and Vapour tubing used on Fuel systems on automobiles. Multilayer extrusion technology enables a manufacturer of Fuel and Vapour tubing to simultaneously co-extrude dissimilar thermoplastic materials in tubular form. This allows the manufacturer to combine expensive and brittle high performance evaporative emission ‘barrier’ polymers with lower cost engineering polymers. However, it is a well-known characteristic of these multilayer tube constructions that the joints between them and connector ‘barbs’ have lower joint integrity. Joint integrity is most often quantified by ‘Pull-off’ and leakage tests. Recent developments in LEV-II requirements for 2004 and beyond indicate that joint integrity will become a focus area for study and improvement.
Technical Paper

β-Carotene Content of Dehydrated Hydroponic Sweetpotatoes Grown under Different Lighting Conditions

2007-07-09
2007-01-3051
The sweetpotato (Ipomoea batatas L. LAM.) is a versatile and underexploited food crop. Consumption of sweetpotato based processed foods provide β-carotene, which is the major precursor of vitamin A. The sweetpotato has the potential to provide antioxidants that may help reduce the radiation risks astronauts face while in space. Therefore the objective of this experiment was to evaluate β-carotene in dehydrated hydroponic sweetpotato cultivars. Hydroponic cultivars WHATLEY/LORETAN and NCC-58 were grown with and without 7-10 μmole of light. WHATLEY/LORETAN contained the highest amount of β-carotene content average of 31 μg/100g in dehydrated hydroponic sweetpotatoes compared to NCC-58 with 18.5 μg/100g.
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

the expanding Polymer Horizon

1960-01-01
600013
THE DEVELOPMENT of new polymers offering properties and new combinations of desirable characteristics, coupled with advances in manufacturing techniques, has expanded the plastics horizon. This paper describes some of these new materials and a few of their many possible applications in the automotive industry. The author emphasizes that greater use of plastics in the automotive field depends to a great degree on the imagination and ability applied in creating new products. Design features most overcome the fundamental limitations of the new materials. The basic weaknesses of plastics are listed. Production techniques will affect the future expansion of the industry. Three methods show particular promise: blow molding, fluidized polymer deposition, and potting compounds.*
Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

eROSITA Camera Low Temperature Thermal Control

2008-01-29
2008-01-1957
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is a powerful X-ray telescope under development by the Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany. eROSITA is the core instrument on the Russian SRG1 mission which is planned for launch in 2011. It comprises seven nested Wolter-I grazing incidence telescopes, each equipped with its own CCD camera. The mirror modules have to be maintained at 20°C while the cameras are operated at -80°C. Both, mirrors and CCDs have to be kept within tight limits. The CCD cooling system consists of passive thermal control components only: two radiators, variable conductance heat pipes (VCHP) and two special thermal storage units. The orbit scenario imposes severe challenges on the thermal control system and also on the attitude control system.
Technical Paper

considerations of some JET-DEFLECTION PRINCIPLES for - - directional control - - lift

1958-01-01
580062
THE performance characteristics of various devices applicable for jet directional control, lift augmentation, and VTOL-STOL studied at the NACA Lewis Laboratory are discussed, including jet deflection devices applicable to the conventonal round nozzle and novel nozzle configurations. The results indicate that many of the deflection devices applicable to conventional nozzles can readily be used for directional control or lift augmentation. Other deflection devices, such as movable plug, internal flap, cylindrical thrust reverser, swiveled primary with fixed shroud, and 90 deg side-bleed nozzle, are limited in application to jet directional control or aircraft trim because the loss in axial thrust for a given deflection force is prohibitive or the maximum deflected force obtainable is limited.
Technical Paper

byteflight~A new protocol for safety-critical applications

2000-06-12
2000-05-0220
The permanently increasing number of convenience and safety functions leads to higher complexity of in-car electronics and the rapidly growing amount of sensors, actuators and electronic control units places higher demands on high- speed data communication protocols. Safety-critical systems need deterministic protocols with fault-tolerant behavior. The need for on-board diagnosis calls for flexible use of bandwidth and an ever-increasing number of functions necessitates a flexible means of extending the system. None of the communication solutions available on the market until now (like CAN or TTP) have been able to fulfill all these demands. To solve these problems, BMW together with several semiconductor companies has developed a new protocol for safety-critical applications in automotive vehicles.
Technical Paper

Zone of Influence of Porous Suction Tubes in Condensing Heat Exchanger for Space Systems

2008-06-29
2008-01-2075
A “next generation” condensing heat exchanger for space systems has to satisfy demanding operational requirements under variable thermal and moisture loads and reduced gravity conditions. Mathematical models described here are used to investigate transient behavior of wetting and de-wetting dynamics in the binary porous system of porous tubes and porous cold plate. The model is based on the Richard's equation simplified for the zero-gravity conditions. The half-saturation distance or the zone of influence of the porous annular suction tubes on the cold-plate porous material will be in the range of 1 to 10 cm for the time scales ranging from 100 to 10,000 seconds and moisture diffusivity in the range of D = 10-4 to 10-6 m2/s.
Technical Paper

Zinc-Magnesium-Aluminium (ZM)-HDG-Coated Steel Sheet for Structural Parts to Outer Panels

2017-03-28
2017-01-0507
Zinc-coatings with a substantial Magnesium content have been in use for over 30 years by now. Unlike the well-established Zn-Al-Mg coatings originating from Japan which have significant higher alloying contents applied mainly for building applications, this Zinc Magnesium Aluminum coating (ZM) is also specifically designed to meet the requirements of car manufacturers. The ZM coating introduced by voestalpine, corrender, is in the upper range of ZM-alloying compositions, which was set by VDA (German Association of the Automotive Industry) and SAE to be within 1.0 to 2.0 wt. % Mg and 1.0 to 3.0 wt. % Al. The properties of these “European” Zinc-Magnesium coatings are well comparable within this range. Compared to GI and GA ZM coatings exhibit significant advantages in the press shops with its excellent formability and reduced galling and powdering respectively which is a significant advantage for the forming of outer panels.
Standard

Zinc Phosphate Treatment Paint Base

2019-05-17
CURRENT
AMS2480J
This specification covers the requirements for producing a zinc phosphate coating on ferrous alloys and the properties of the coating.
Technical Paper

Zinc Extrusion

1966-02-01
660051
The extrusion of zinc alloys, with special reference to zinc-titanium alloys, is described. Parameters for this process are defined. The excellent tensile and creep properties obtained in a typical extruded zinc-titanium alloy are presented. Extruded zinc with a quality copper-nickel-chrome plated finish offers a new approach to the production of automotive trim and of similar products.
Technical Paper

Zero-Offset in Transducer Output

2005-05-16
2005-01-2555
Zero-offset in transducer output during airbag noise testing is often observed, but mostly ignored due to the lack of understanding of its causes and implications. In the field of high-g acceleration measurement, this phenomenon is well documented, and is referred to as zeroshift. Zero-offset occurs when a component in the measurement chain is exposed to some unexpected inputs which the component has not been designed to handle. These unexpected inputs can be mechanical, electrical, or optical. How the transducer reacts to such inputs and the amount of zero-offset produced depends on the sensing mechanism, material used, and the design of the component itself. This paper explores the causes of zero-offset from a general perspective, covering the entire measurement chain. Although much of the information and discussions are based on data obtained from acceleration measurement systems, the findings are applicable to other transducer types, such as pressure and acoustic measurements.
Technical Paper

Zebra Line Laser Heat Treated Die Development

2020-04-14
2020-01-0756
The thermal deflection associated with the conventional die heat treating procedure usually requires extra die grinding process to fine-tune the die surface. Due to the size of the production die, the grinding is time consuming and is not cost effective. The goal of the study is to develop a new die heat treating process utilizing the flexible laser heat treatment, which could serve the same purpose as the conventional die heat treating and avoid the thermal deflection. The unique look of the developed zebra pattern laser heat treating process is defined as the Zebra Line. The heat-treating parameters and processes were developed and calibrated to produce the laser heat treating on laboratory size dies, which were subjected to the die wear test in the laboratory condition. The USS HDGI 980 XG3TM steel was selected to be carried out on the developmental dies in the cyclic bend die wear test due to its high strength and coating characteristic.
X