Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Journal Article

Liquid and Vapor Envelopes of Sprays from a Multi-Hole Fuel Injector Operating under Closely-Spaced Double-Injection Conditions

2012-04-16
2012-01-0462
Liquid and vapor envelopes of sprays from a multi-hole fuel injector operating under closely-spaced double-injection conditions were investigated using a combination of high-speed schlieren and Mie scattering imaging. The effects of mass split ratio and dwell time between injections on liquid and vapor penetration have been investigated under engine-like pressures and temperatures. For the conditions evaluated, the results indicate that closely-spaced double-injection generally reduces liquid and vapor penetration.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Technical Paper

Experimental Characterization of DI Gasoline Injection Processes

2015-09-01
2015-01-1894
This work investigates the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G). Experiments are performed at identical operating conditions by multiple institutions using standardized procedures to provide high-quality target datasets for CFD spray modeling improvement. The initial conditions set by the ECN gasoline spray community (Spray G: Ambient temperature: 573 K, ambient density: 3.5 kg/m3 (∼6 bar), fuel: iso-octane, and injection pressure: 200 bar) are examined along with additional conditions to extend the dataset covering a broader operating range. Two institutes evaluated the liquid and vapor penetration characteristics of a particular 8-hole, 80° full-angle, Spray G injector (injector #28) using Mie scattering (liquid) and schlieren (vapor).
Journal Article

Evaluation of Liquid and Vapor Penetration of Sprays from a Multi-Hole Gasoline Fuel Injector Operating Under Engine-Like Conditions

2014-04-01
2014-01-1409
Liquid and vapor penetration of sprays from a multi-hole gasoline fuel injector operating under engine-like conditions were systematically investigated utilizing a high-speed imaging system capable of acquiring schlieren and Mie scattering images in a near-simultaneous fashion. The influences of ambient conditions and fuel properties on the formation of liquid and vapor envelopes were evaluated. In addition to the compilation of an extensive data set, results of the investigation indicate that mixing-limited vaporization modeling can be utilized to predict the maximum liquid penetration of short-duration, multi-plume sprays.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
X