Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Two-Dimensional In-Cylinder Soot Volume Fractions in Diesel Low Temperature Combustion Mode

2011-04-12
2011-01-1390
Soot Volume Fraction (SVF) measurements were performed in an IFP Energies nouvelles optical single cylinder Diesel engine operated in Low Temperature Combustion (LTC) conditions. The engine was equipped with a sapphire liner, a dedicated flat bowl piston and a six-hole common-rail high pressure injector. The piston design included four quartz windows allowing optical access into the bowl. The aim of this work was to study soot formation and oxidation during the LTC Diesel combustion process and to build a database providing soot formation and oxidation data under a set of engine conditions to help developing and testing Computational Fluid Dynamics (CFD) models. Two complementary optical diagnostic techniques were combined: Planar Laser Induced Incandescence (PLII) and Laser Extinction Method (LEM).
Technical Paper

Study of the Correlation Between Mixing and Auto-Ignition Processes in High Pressure Diesel Jets

2007-04-16
2007-01-0650
A tracer laser-induced fluorescence (LIF) technique for the visualisation of fuel distribution in the presence of oxygen was developed and then used sequentially with high speed chemiluminescence imaging to study the correlation between the mixing and auto-ignition processes of high pressure Diesel jets. A single hole common rail Diesel injector allowing high injection pressures up to 150MPa was used. The reacting fuel spray was observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. Both free jet and flat wall impinging jet configurations were studied. Several tracers were first considered with the objective of developing a tracer-LIF technique in the presence of oxygen. 5-nonanone was selected for its higher fluorescence efficiency.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Study of Air Entrainment of Multi-hole Diesel Injection by Particle Image Velocimetry - Effect of Neighboring Jets Interaction and Transient Behavior After End of Injection.

2010-04-12
2010-01-0342
The air entrainment of multi-hole diesel injection is investigated by high speed Particle Image Velocimetry (PIV) using a multi-hole common rail injector with an injection pressure of 100 MPa. The sprays are observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a diesel engine during injection. Typical ambient temperature of 800K and ambient density of 25 kg/m3 are chosen. The air entrainment is studied with the PIV technique, giving access to the velocity fields in the surrounding air and/or in the interior of two neighboring jets. High acquisition rate of 5000 Hz, corresponding to 200 μs between two consecutive image pairs is obtained by a high-speed camera coupled with a high-speed Nd:YLF laser. The effect of neighboring jets interaction is studied by comparing four injectors with different numbers of holes (4, 6, 8 and 12) with similar static mass flow rate per hole.
Journal Article

Soot Volume Fraction Measurements in a Gasoline Direct Injection Engine by Combined Laser Induced Incandescence and Laser Extinction Method

2010-04-12
2010-01-0346
In order to study the soot formation and oxidation phenomena during the combustion process of Gasoline Direct Injection (GDI) engines, soot volume fraction measurements were performed in an optical GDI engine by combined Laser-Induced Incandescence (LII) and Laser Extinction Method (LEM). The coupling of these two diagnostics takes advantages of their complementary characteristics. LII provides a two-dimensional image of the soot distribution while LEM is used to calibrate the LII image in order to obtain soot volume fraction fields. The LII diagnostic was performed through a quartz cylinder liner in order to obtain a vertical plane of soot concentration distribution. LEM was simultaneously performed along a line of sight that was coplanar with the LII plane, in order to carry out quantitative measurements of path-length-averaged soot volume fraction. The LII images were calibrated along the same path as that of the LEM measurement.
Journal Article

Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

2018-04-03
2018-01-0258
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging.
Technical Paper

Investigation of the Mixing Process and the Fuel Mass Concentration Fields for a Gasoline Direct-Injection Spray at ECN Spray G Conditions and Variants

2015-09-01
2015-01-1902
Within the Engine Combustion Network (ECN) research frame, the mixing process and the fuel mass concentration fields were investigated at spray G conditions and variants with optical diagnostics. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel. The target condition, called “Spray G”, which is representative of gasoline direct-injection engine conditions, uses well-defined ambient (573 K, 6 bar, 3.5 kg/m3, O2-free) and injector conditions (200 bar, eight-hole injector, 0.165 mm orifice diameter). Measurements were also conducted at 6 and 9 kg/m3 for temperatures of 700 and 800 K respectively. Two techniques were used to visualize the jet formation: p-difluorobenzene laser induced fluorescence (LIF) imaging and high-repetition-rate schlieren visualization. Images from both methods were compared in terms of jet penetration and size.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Technical Paper

High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine

1999-10-25
1999-01-3648
A database of information concerning the spray development and pollutant formation in common-rail, direct-injection Diesel engine is constructed using a transparent model Diesel engine. Spray development is investigated using optical diagnostics: Mie scattering and Laser Induced Exciplex Fluorescence (LIEF) make possible qualitative visualization of liquid and vapor phases. The injection pressure/nozzle hole diameter is found to be the most important parameter (in the parameter range used for the study): it reduces the liquid penetration length and improves the mixing of vapor fuel. Direct imaging of combustion development shows the influence of different engine parameters on flame location. Comparison with measured vapor distributions shows the effect of thermal expansion on the vapor plume before any light from combustion is visible. Soot formation is investigated using Laser Induced Incandescence imaging.
Technical Paper

Gasoline Injection and Spray Combustion in a Cell with Conditions Typical of Direct Injection Engines

2003-10-27
2003-01-3108
Penetration and combustion of fuel sprays is studied in conditions similar to gasoline direct injection engines. A closed pressurized and heated injection cell is used. It is equipped with quartz windows providing large optical accesses. A homogeneous flammable mixture is introduced in the cell and ignited to raise the internal pressure and temperature. Liquid fuel is injected at the time when the desired thermodynamic conditions are reached. Conditions representative of late injection in a direct-injection engine are selected. Gasoline spray ignition and combustion is provided by a spark plug with long electrodes, locating the electrode gap right in the middle of the spray. The combustion does not reach the wall, which makes this experiment interesting for the validation of combustion in CFD codes. Two pressure swirl injectors with spray angles of 60 and 90 degree are used. The fuel is iso-octane with 5% 3-pentanone as tracer.
Technical Paper

Experimental Methodology for the Understanding of Soot-Fuel Relationship in Diesel Combustion: Fuel Characterization and Surrogate Validation

2017-03-28
2017-01-0721
This paper is a contribution to the understanding of the formation and oxidation of soot in Diesel combustion. An ECN spray A injector (single axial-oriented orifice) was tested in a well characterized high-temperature/high-pressure vessel at engine relevant conditions. The size of the test section (>70mm) enables to study the soot formation process in nearly free field conditions, which constitutes an ideal feature for fundamental understanding and model validation. Simultaneous high-speed OH* chemiluminescence imaging and high-speed 2D extinction were performed to link together the information regarding flame chemistry (i.e. lift-off length) and the soot data. The experiments were carried out for a set of fuels with different CN and sooting index (Diesel fuel, Jet fuel, gasoline and n-dodecane) performing parametric variations in the test conditions (ambient temperature and oxygen concentration).
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Technical Paper

A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet

2002-05-06
2002-01-1632
Quantitative fuel concentration visualizations are carried out to study the mixing process between fuel and air in Direct Injection (DI) Diesel like conditions, and generate high quality data for the validation of mixing models. In order to avoid the particular complication connected with fuel droplets, a gaseous fuel jet is investigated. Measurements are performed in a high-pressure chamber that can provide conditions similar to those in a diesel engine. A gas injection system able to perform injections in a high-pressure chamber with a good control of the boundary conditions is chosen and characterized. Mass flow rates typical of DI Diesel injection are reproduced. A Laser Induced Fluorescence technique requiring the mixing at high pressure of the fluorescent tracer, biacetyl, with the gaseous fuel, methane, is developed. This experimental technique is able to provide quantitative measurement of fuel concentration in high-pressure jets.
X