Refine Your Search

Topic

Search Results

Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

Time-Resolved Nature of Exhaust Gas Emissions and Piston Wall Temperature Under Transient Operation in a Small Diesel Engine

1996-02-01
960031
Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.
Technical Paper

Time Series Analysis of Diesel Exhaust Gas Emissions Under Transient Operation

1993-03-01
930976
Time series analysis of diesel exhaust gas emissions under transient operation was carried out using a uniquely developed gas sampling system to efficiently collect all exhaust gas throughout transient cycles. The effects of fuel properties and other engine operation parameters on the exhaust emissions under transient runs when fuel amounts abruptly increase were analyzed. The results showed that THC increased abruptly to 2 or 6 times the final steady-state concentration immediately after the start of acceleration and then decreased to the steady-state values after 70∼200 cycles. At acceleration, NOx increased abruptly to about 80 % of the final NOx concentration, and then increased gradually to reach the final values after 60∼500 cycles. The behaviors of THC and NOx during transient operation can be described by exponential functions of the elapsed cycle numbers and the final emission concentrations.
Technical Paper

Thermal efficiency improvement in twin shaped semi- premixed diesel combustion with a combustion chamber dividing fuel sprays and optimization of fuel ignitability

2023-09-29
2023-32-0051
The authors have reported significant smoke reduction in twin shaped semi-premixed diesel combustion with a newly designed combustion chamber to distribute the first and the second sprays into upper and lower layers. However, the first stage premixed combustion tends to advance far from the TDC, resulting in lowering of thermal efficiencies. In this report, improvement of thermal efficiency by optimizing the combustion phase with lower ignitability fuels was identified with the divided combustion chamber. The experiment was conducted with four fuels with different cetane numbers. The first stage premixed combustion can be retarded to the optimum phase with the fuel with cetane number 38, establishing high efficiencies.
Technical Paper

Thermal Efficiency Improvements with Split Primary Fuel Injections in Semi-Premixed Diesel Combustion with Multi-Peak Shaped Heat Release

2019-12-19
2019-01-2170
To improve the combustion characteristics in semi-premixed diesel combustion, consisting in the first-stage premixed combustion of the primary fuel injection and the second-stage spray combustion of the secondary injection, the effect of splitting the primary injection was investigated in a diesel engine and analyzed with a CFD. The indicated thermal efficiency improves due to reductions in heat transfer losses to the in-cylinder wall and the combustion noise is suppressed with the split primary injections. The CFD analysis showed that the reduction in heat transfer loss with the split primary injections is due to a decrease in the combustion quantity near the combustion chamber wall.
Technical Paper

The Influence of Fuel Properties on Diesel-Soot Suppression with Soluble Fuel Additives

1991-02-01
910737
Diesel soot suppression effects of catalytic fuel additives for a range of fuels with different properties were investigated with calcium naphthenate. A single cylinder DI diesel engine and a thermobalance were used to determine the soot reduction and its mechanism for seven kinds of fuels. Experimental results showed that the catalytic effect of the fuel additive was different for the different fuels, and could be described by a parameter considering cetane number and kinematic viscosity. The fuel additives reduced soot more effectively for fuels with higher cetane number and lower kinematic viscosity. This result was explained by soot oxidation characteristics for the different fuels. Oxidation of soot with the metallic additive proceeds in two stages: stage I, a very rapid oxidation stage; and stage II, a following slow or ordinary oxidation stage.
Technical Paper

Significant NOx Reductions with Direct Water Injection into the Sub-Chamber of an IDI Diesel Engine

1995-02-01
950609
The effect of direct water injection into the combustion chamber on NOx reduction in an IDI diesel engine was investigated. The temperature distribution in the swirl chamber was analyzed quantitatively with high speed photography and the two color method. Direct water injection into a swirl chamber prior to fuel injection reduced NOx emission significantly over a wide output range without sacrifice of BSFC. Other emissions were almost unchanged or slightly decreased with water injection. Water injection reduced the flame temperature at the center of the swirl chamber, while the mean gas temperature in the cylinder and the rate of heat release changed little.
Technical Paper

Optimization of Heat Release Shape and the Connecting Rod Crank Radius Ratio for Low Engine Noise and High Thermal Efficiency of Premixed Diesel Engine Combustion

2015-04-14
2015-01-0825
Premixed diesel combustion offers the potential of high thermal efficiency and low emissions, however, because the rapid rate of pressure rise and short combustion durations are often associated with low temperature combustion processes, noise is also an issue. The reduction of combustion noise is a technical matter that needs separate attention. Engine noise research has been conducted experimentally with a premixed diesel engine and techniques for engine noise simulation have been developed. The engine employed in the research here is a supercharged, single cylinder DI diesel research engine with a high pressure common rail fuel injection system. In the experiments, the engine was operated at 1600 rpm and 2000 rpm, the engine noise was sampled by two microphones, and the sampled engine noise was averaged and analyzed by an FFT sound analyzer.
Journal Article

Molecular Structure of Hydrocarbons and Auto-Ignition Characteristics of HCCI Engines

2014-11-11
2014-32-0003
The chemical composition of marketed gasoline varies depending on the crude oil, refinery processes of oil refineries, and season. The combustion characteristics of HCCI engines are very sensitive to the fuel composition, and a fuel standard for HCCI is needed for HCCI vehicles to be commercially viable. In this paper, the effects of the structure of the fuel components on auto-ignition characteristics and HCCI engine performance were investigated. The engine employed in the experiments is a research, single cylinder HCCI engine with a compression ratio of 14.7. The intake manifold was equipped with a heater attachment allowing control of the intake air temperature up to 150 °C at 2000 rpm. Thirteen kinds of hydrocarbons, 4 kinds of paraffins, 3kinds of naphthenes, and 6 kinds of aromatics, were chosen for the investigation, and 20vol% of each of the pure hydrocarbons was blended with the 80 vol% of PFR50 fuel.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Journal Article

Low Temperature Premixed Diesel Combustion with Blends of Ordinary Diesel Fuel and Normal Heptane

2015-11-17
2015-32-0754
Premixed diesel combustion blending high volatility fuels into diesel fuel were investigated in a modern diesel engine. First, various fractions of normal heptane and diesel fuel were examined to determine the influence of the blending of a highly ignitable and volatile fuel into diesel fuel. The indicated thermal efficiency improves almost linearly with increasing normal heptane fraction, particularly at advanced injection timings when the fuel is not injected directly into the piston cavity. This improvement is mainly due to decreases in the other losses, ϕother which are calculated with the following equation based on the energy balance. ηu: The combustion efficiency calculated from the exhaust gas compositions ηi: The indicated thermal efficiency ϕex: The exhaust loss calculated from the enthalpy difference between intake and exhaust gas The decreases in the other losses with normal heptane blends are due to a reduction in the unburned fuel which does not reach the gas analyzer.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Journal Article

Influence of Fuel Properties on Operational Range and Thermal Efficiency of Premixed Diesel Combustion

2013-10-15
2013-32-9054
The influence of fuel properties on the operational range and the thermal efficiency of premixed diesel combustion was evaluated with an ordinary diesel fuel, a primary reference fuel for cetane numbers, three primary reference fuels for octane numbers, and two normal heptane-toluene blend fuels in a single-cylinder DI diesel engine. The fuel injection timing was set at 25°CA BTDC and the maximum rate of pressure rise was maintained below 1.0 MPa/°CA when lowering the intake oxygen concentration by cooled EGR. With increasing octane numbers, the higher intake oxygen concentration can be used, resulting in higher indicated thermal efficiency due to a higher combustion efficiency. The best thermal efficiency at the optimum intake oxygen concentration with the ordinary diesel fuel is lower than with the primary reference fuels with the similar ignitability but higher volatility.
Technical Paper

Influence of Carbon Dioxide on Combustion in an HCCI Engine with the Ignition-Control by Hydrogen

2006-10-16
2006-01-3248
A homogeneous-charge compression-ignition (HCCI) engine system that was fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG) has been proposed in the previous research. Adjusting the proportion of DME and MRG can effectively control the ignition timing of the engine. In the system, both fuels are to be produced from methanol in onboard reformers utilizing the engine exhaust gas heat. While hydrogen contained in MRG has the main role of the ignition control, hydrogen increases with carbon dioxide in the methanol reforming. This paper investigates the influence of carbon dioxide on HCCI combustion engine with the ignition control by hydrogen. Both thermal and chemical effects of carbon dioxide are analyzed.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Improvements of Diesel Combustion and Emissions with Two-stage Fuel Injection at Different Piston Positions

2000-03-06
2000-01-1180
The fuel spray distribution in a DI diesel engine with pilot injection was actively controlled by pilot and main fuel injections at different piston positions to prevent the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separates the cores of the pilot and main fuel sprays. Experiments showed that an ordinary cavity without the central lip emitted more smoke, while smokeless, low NOx operation was realized with a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emits smoke.
Technical Paper

Improvements in Thermal Efficiency of Premixed Diesel Combustion with Low Distillation Temperature Fuels

2013-10-14
2013-01-2624
The influence of fuel volatility on the thermal efficiency of premixed diesel combustion was evaluated with three ordinary diesel fuels with different distillation temperature distributions and also with a primary reference fuel with an octane number of 20 (PRF20) as a high volatility fuel. The experiments were conducted on a single-cylinder DI diesel engine for the premixed diesel combustion with a single injection at 11% intake oxygen concentration and conventional diesel combustion with a pilot fuel injection at 21% intake oxygen concentration. With the premixed diesel combustion, the indicated thermal efficiencies with the ordinary diesel fuels were lower than with PRF20 although the shapes of the rate of heat release and the combustion efficiencies calculated from the exhaust gas components were almost unchanged. With the conventional diesel combustion, the indicated thermal efficiencies with the ordinary diesel fuels and PRF20 were similar.
Journal Article

Improvement in DME-HCCI Combustion with Ethanol as a Low-Temperature Oxidation Inhibitor

2011-08-30
2011-01-1791
Port injection of ethanol addition as an ignition inhibitor was implemented to control ignition timing and expand the operating range in DME fueled HCCI combustion. The ethanol reduced the rate of low-temperature oxidation and consequently delayed the onset of the high-temperature reaction with ultra-low NOx over a wide operating range. Along with the ethanol addition, changes in intake temperature, overall equivalence ratio, and engine speed are investigated and shown to be effective in HCCI combustion control and to enable an extension of operation range. A chemical reaction analysis was performed to elucidate details of the ignition inhibition on low-temperature oxidation of DME-HCCI combustion.
Technical Paper

HCCI Combustion Control by DME-Ethanol Binary Fuel and EGR

2012-09-10
2012-01-1577
The HCCI engine offers the potential of low NOx emissions combined with diesel engine like high efficiency, however HCCI operation is restricted to low engine speeds and torques constrained by narrow noise (HCCI knocking) and misfiring limits. Gasoline like fuel vaporizes and mixes with air, but the mixture may auto-ignite at the same time, leading to heavy HCCI knocking. Retarding the CA50 (the crank angle of the 50% burn) is well known as a method to slow the maximum pressure rise rate and reduce HCCI knocking. The CA50 can be controlled by the fuel composition, for example, di-methyl ether (DME), which is easily synthesized from natural gas, has strong low temperature heat release (LTHR) characteristics and ethanol generates strong LTHR inhibitor effects. The utilization of DME-ethanol binary blended fuels has the potential to broaden the HCCI engine load-speed range.
Technical Paper

Expansion of the Operating Range with In-Cylinder Water Injection in a Premixed Charge Compression Ignition Engine

2002-05-06
2002-01-1743
The control of fuel ignition timing and suppression of rapid combustion in a premixed charge compression ignition (PCCI) engine was attempted with direct in-cylinder injection of water as a reaction suppressor. The water injection significantly reduced the heat release at low temperature oxidation, which suppressed the increase in charge temperature after the low temperature oxidation and the rapid combustion caused by the high temperature oxidation. The possible engine operating range with ultra low NOx and smokeless combustion was extended to a higher load range with the water injection. Rapid combustion was suppressed by reductions in the maximum in-cylinder gas temperature due to water injection while the combustion efficiency suffered. Therefore, the maximum charge temperature needs to be controlled within an extremely limited range to maintain a satisfactory compromise between mild combustion and high combustion efficiency.
X