Refine Your Search

Topic

Search Results

Standard

Validation of Compressibility Test Systems for Friction Materials

2021-01-13
CURRENT
J3079/1_202101
This SAE Recommended Practice (RP) applies to the validation process for test systems used to measure deflection (compressibility, creep, or swell and growth) of friction materials and friction material assemblies. The materials or assemblies can fit passenger cars, light trucks, and commercial vehicles equipped with hydraulic or air brake systems, using disc or drum brakes.
Standard

Test Procedures for Shear Strength of Automotive Brake Pads and Brake Lining Assemblies

2017-11-15
CURRENT
J840_201711
This SAE Recommended Practice covers equipment capabilities and the test procedure to quantify and qualify the shear strength between the friction material and backing plate or brake shoe for automotive applications. This SAE Recommended Practice is applicable to: bonded drum brake linings; integrally molded disc brake pads; disc brake pads and backing plate assemblies using mechanical retention systems (MRS); coupons from drum brake shoes or disc brake pad assemblies. The test and its results are also useful for short, semi-quantitative verification of the bonding and molding process. This Recommended Practice is applicable during product and process development, product verification and quality control. This Recommended Practice does not replicate or predict actual vehicle performance or part durability.
Standard

Specific Gravity of Friction Material

2017-02-02
CURRENT
J380_201702
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer. Specific gravity alone shows nothing about a materials in use performance. The specific gravity of sintered metal powder friction materials, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376.
Standard

Specific Gravity of Friction Material

2009-08-26
HISTORICAL
J380_200908
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer. Specific gravity alone shows nothing about a materials in use performance. The specific gravity of sintered metal powder friction materials, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376.
Standard

SPECIFIC GRAVITY OF BRAKE LINING

1993-02-01
HISTORICAL
J380_199302
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining's ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
Standard

SPECIFIC GRAVITY OF BRAKE LINING

1971-08-01
HISTORICAL
J380_197108
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376, ‘Density of Sintered Metal Friction Material’ (latest revision).1 The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
Standard

Measurement of Disc Brake Friction Material Underlayer Distribution

2016-05-24
CURRENT
J2724_201605
This procedure describes a method for measuring the fraction of underlayer (also referred to as backing layer) existing at any given height above the a disc brake friction materials shoe plate. Measuring underlayer distribution is useful for computing useable lining thickness and for friction material quality management.
Standard

Measurement of Disc Brake Friction Material Underlayer Distribution

2012-04-19
HISTORICAL
J2724_201204
This procedure describes a method for measuring the fraction of underlayer (also referred to as backing layer) existing at any given height above the a disc brake friction materials shoe plate. Measuring underlayer distribution is useful for computing useable lining thickness and for friction material quality management.
Standard

Low-preload Deflection Measurement for Brake Pads, Noise Shims, and Brake Pad Assemblies

2019-11-22
WIP
J3079/2

This SAE Standard specifies a method for measuring the deflection of friction materials, noise insulators, and disc brake pad assemblies to be used in road vehicles with a Gross Vehicle Weight Rating below 4336 kg.

This part of the SAE J3079 includes the test for deflection and creep at various pressures under ambient temperature conditions.

This SAE test method differs from SAE J2468 and ISO 6310 in the preload and maximum load applied to the test sample when deflection is measured. It also introduces additional measurements such as for deflection offset, hysteresis, and creep.

Standard

Low-preload Deflection Measurement for Brake Pads, Noise Shims, and Brake Pad Assemblies

2016-07-14
CURRENT
J3079/2_201607
This SAE Standard specifies a method for measuring the deflection of friction materials, noise insulators, and disc brake pad assemblies to be used in road vehicles with a Gross Vehicle Weight Rating below 4336 kg. This part of the SAE J3079 includes the test for deflection and creep at various pressures under ambient temperature conditions. This SAE test method differs from SAE J2468 and ISO 6310 in the preload and maximum load applied to the test sample when deflection is measured. It also introduces additional measurements such as for deflection offset, hysteresis, and creep.
Standard

Hardness of Brake Lining

2015-08-27
CURRENT
J2654_201508
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. NOTE—This method is not a measure of friction level. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing. NOTE—The hardness of sintered powder metal lining is usually determined with Rockwell superficial hardness equipment. (See ASTM B 347)
Standard

Hardness of Brake Lining

2004-08-16
HISTORICAL
J2654_200408
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing.
Standard

Hardness of Brake Lining

2012-04-19
HISTORICAL
J2654_201204
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing.
Standard

Gogan Hardness of Brake Lining

2017-02-02
CURRENT
J379_201702
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
Standard

Gogan Hardness of Brake Lining

2009-08-26
HISTORICAL
J379_200908
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
Standard

Gogan Hardness of Brake Lining

2004-08-16
HISTORICAL
J379_200408
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
Standard

GOGAN HARDNESS OF BRAKE LINING

1969-01-01
HISTORICAL
J379_196901
Gogan hardness, a nondestructive (a penetrator causes shallow surface deformation) method of measuring compressibility, is used as a quality control check of the consistency of formulation and processing of brake lining. Gogan hardness alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Gogan hardness varies with formulation, contour, and thickness of the lining. The hardness of sintered powder metal lining is usually determined with Rockwell Superficial hardness equipment. Reference ASTM B 3471 (latest revision) “Standard Method of Test for Hardness of Sintered Metal Friction Materials.” The Gogan hardness and the range of Gogan hardness are peculiar to each formulation, thickness, and contour and, therefore, the acceptable values or range must be established for each formulation and part configuration by the manufacturer.
Standard

GOGAN HARDNESS OF BRAKE LINING

1996-03-01
HISTORICAL
J379_199603
Gogan hardness, a nondestructive (a penetrator causes shallow surface deformation) method of measuring compressibility, is used as a quality control check of the consistency of formulation and processing of brake lining. Gogan hardness alone shows nothing about a lining's ability to develop friction or to resist fade when used as a friction element in brakes. Gogan hardness varies with formulation, contour, and thickness of the lining. The Gogan hardness and the range of Gogan hardness are peculiar to each formulation, thickness, and contour and, therefore, the acceptable values or range must be established for each formulation and part configuration by the manufacturer.
X