Refine Your Search

Topic

null

Search Results

Technical Paper

Visualization of Autoignited Kernel and Propagation of Pressure Wave during Knocking Combustion in a Hydrogen Spark-Ignition Engine

2009-06-15
2009-01-1773
Investigation of knocking combustion in a hydrogen spark-ignition engine is one of the major challenges for future vehicle development. The knock phenomenon in a Spark-Ignition (SI) engine is caused by autoignition of the unburned gas ahead of the flame. The explosive combustion of the end-gas creates a pressure wave that leads to damage of the cylinder wall and the piston head of the engine. We observed autoignition in the end-gas region due to compression by the propagating flame front using a high-speed colour video camera through the optically accessible cylindrical quartz window on the top of the cylinder head. Moreover, a high-speed monochrome video camera operating at a speed of 250, 000 frame/s was used to measure the pressure wave propagation. The goal of this research was to improve our ability to describe the effect of the autoignition process on the end-gas and propagating pressure wave during knocking combustion with the help of a high-speed video camera.
Technical Paper

Visualization of Ambient Air Motion and Entrainment into a Transient Gas Jet Impinging on a Flat Wall

1995-10-01
952513
A turbulent gas jet impinging on a flat wall was visualized by a laser sheet method. Velocity fields were determined from the images with a high speed video system by processing them in terms of the cross correlation method for the jet and particle tracking method for the ambient air from the same images. The vortex flow near the transient jet tip impinging on the wall was visualized and analyzed successfully. The velocity field obtained from the above methods was compared to that determined with a laser Doppler anemometer. The path line of a certain period which was taken with a CCD camera with controlled shutter was analyzed and the mean rate of air entrainment was determined quantitatively. The spatial and temporal change of the entrainment rate was estimated and it was found that the entrainment rate near the upstream part of the jet tip region is larger because of the vortex.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Turbulent Premixed Flames Under Lean Conditions Studied with Ion Current Measurement in a Homogeneous Charge Spark-Ignition Engine

2000-06-19
2000-01-1940
The structures of the turbulent premixed flame in the engine cylinder under lean burn conditions were investigated using ion probe method. The flow fields were measured with an LDA for two tumble ratios and two compression ratios. And ion-current signal was analyzed to discuss the interaction between the turbulence and the flame structure. The effects of turbulence and equivalence ratio on the characteristic values of the turbulent flame, that is to say number of ion-current peaks, thickness of flame front and thickness of burning zone of the flamelet, were investigated. In normal combustion, the structure of the turbulent flame front is almost the same as the laminar flame. In the lean limit, the flamelet is broken and stretched and then the structure may change.
Technical Paper

Transient Temperature Measurement of Unburned Gas in an Engine Cylinder Using Laser Interferometry with a Fiber-Optic Sensor

2003-05-19
2003-01-1799
A heterodyne interferometry system with a fiber-optic sensor was developed to measure the temperature history of unburned gas in an engine cylinder. A polarization-preserving fiber and metal mirror were used as the fiber-optic sensor to deliver the test beam to and from the measurement region. This fiber-optic sensor can be assembled in the engine cylinder or the cylinder head without a lot of improvements of an actual engine. The feasibility of our system was sufficient to be applied to temperature history measurement of an unburned gas compressed by flame propagation in an engine cylinder. The resolution of the temperature measurement is approximately 0.7 K, and is dependent on both the sampling clock speed of the A/D converter and the length of the measurement region.
Technical Paper

Transient Temperature Measurement of Gas Using Fiber Optic Heterodyne Interferometry

2001-05-07
2001-01-1922
A fiber optical heterodyne interferometry system was developed to obtain high temporal resolution temperature histories of unburned and burned gases non-intrusively. The effective optical path length of the test beam changes with the gas density and corresponding changes of the refractive index. Therefore, the temperature history of the gas can be determined from the pressure and phase shift of the interference signal. The resolution of the temperature measurement is approximately 0.5 K, and is dependent upon both the sampling clock speed of the A/D converter and the length of the test section. A polarization-preserving fiber is used to deliver the test beam to and from the test section, to improve the feasibility of the system as a sensor probe. This optical heterodyne interferometry system may also be used for other applications that require gas density and pressure measurements with a fast response time, or a transient temperature record.
Technical Paper

The Study on Co-Simulation Based Tracked Vehicle Path Tracking Control

2015-04-14
2015-01-1114
The tracked vehicle with a fully hydraulic driving system, which has a strong traveling performance of passing and mobility ability in the complex terrain, is a typical system of mechanical-electrical-hydraulic integration. At the same time, for the good low-speed stability of the hydraulic system, this vehicle is widely applied in most engineering projects. However, for the complexity and unpredictability of the motion state in the complex environment and the power matching of the driving system, the driving path of the tracked vehicle with hydraulic driving is difficult to control. Moreover, for the complicated interaction between mechanics, the establishment of the mathematical model is much more complex, and the traditional mechanics-control and hydraulic-control co-simulation can not accurately simulate this physical phenomenon. The kinematic and dynamics characteristics of the tracked vehicle are studied firstly, and the dynamics model is built.
Technical Paper

The Research of Solar Organic Rankine Evaporation Cycle System for Vehicle

2016-04-05
2016-01-1268
With the help of organic working medium absorbing the solar energy for steam electric power generation, green energy can be provided to automotive accessories so as to improve the vehicle energy efficiency. In the hot summer, the exhausted heat resulting from cars’ directly exposing to the sun can be used to cool and ventilate the passenger compartment. Considering the space occupied by the system in the combination of both practical features for solar heat source--low power and poor stability-- a compact evaporation structure was designed to enhance the solar utilization efficiency. In the research, the heat source of power and temperature variation range was determined by the available solar roof with photo-thermal conversion model. Then started from the ratio of exhausted heat utilization corresponding to evaporator’s characteristic parameter, the performance analysis was made in the different working conditions.
Technical Paper

The Performance Study of Air-Friction Reduction System for Hydraulic Retarder

2014-09-30
2014-01-2283
The hydraulic retarder, which is an auxiliary brake device for enhancing traffic safety, has been widely used in kinds of heavy commercial vehicles. When the vehicle equipped with the retarder is traveling in non-braking state, the transmission loss would be caused because of the stirring air between working wheels of the rotor and the stator no matter if the retarder connects in parallel or in series with the transmission [1]. This paper introduces an elaborate hydraulic retarder air-friction reduction system (AFRS) which consists of a vacuum generating module and pneumatic control module. AFRS works to reduce the air friction by decreasing the gas density between working wheels when the retarder is in non-braking state. The pneumatic control model of hydraulic retarder is built first. Then various driving conditions are considered to verify the performance of the AFRS. The stability of the AFRS is analyzed based on the complete driveline model.
Technical Paper

The Energy Saving of Cooling Fan with Electro-Hydraulic Motors Based on Fuzzy Control

2016-09-27
2016-01-8117
The cooling system with two fans is generally driven by electrical motors in the small cars. Compared with the traditional cars, heavy duty trucks have the larger heat dissipation power of cooling system. The motors power consumption of dual fans will be larger and the two electrical motors will occupy a large space in the engine cabin. Hydrostatic drive refers to the cooling fan is driven by hydraulic motor, but it has the low transmission efficiency. According to the engine water temperature value and the actual working status of the hydraulic system, the actual speed of cooling fan can be controlled by the computer, which guarantees the normal working water temperature of the engine. Hydrostatic drive is generally applied to heavy vehicles, engineering machinery and excavators as driving source of cooling fan which contains the advantages of large output power, overload protection, continuous speed regulation and flexible space arrangements.
Technical Paper

The Effect of Turbulence on Combustion in Cylinder of a Spark-Ignition Engine=Evaluation of Entrainment Model

1988-02-01
880128
A turbulent entrainment model is considered to be reasonable for the combustion in a spark-ignition engine. For this kind of model, it is important to estimate the turbulence characteristics, turbulent burning velocity, flame surface area and several empirical constants. Nevertheless, the examination of these values have not been examined sufficiently. In this study, a combustion model was proposed, and initiation of flame propagation, burning process of an eddy, scale of turbulence and turbulent burning velocity were discussed in detail. This model was examined under various conditions of engine speed (600-1200rpm), compression ratio (3.2-4.8) and ignition timing. The calculation results of mass fraction burned, burn rate and burn duration were in good agreement with the experimental ones. It was found that the concept of such a turbulent entrainment model was valid for predicting the combustion in a spark-ignition engine.
Technical Paper

The Development of an Electronic Control Unit for a High Pressure Common Rail Diesel/Natural Gas Dual-Fuel Engine

2014-04-01
2014-01-1168
Natural gas has been considered to be one of the most promising alternative fuels due to its lower NOx and soot emissions, less carbon footprint as well as attractive price. Furthermore, higher octane number makes it suitable for high compression ratio application compared with other gaseous fuels. For better economical and lower emissions, a turbocharged, four strokes, direct injection, high pressure common rail diesel engine has been converted into a diesel/natural gas dual-fuel engine. For dual-fuel engine operation, natural gas as the main fuel is sequentially injected into intake manifold, and a very small amount of diesel is directly injected into cylinder as the ignition source. In this paper, a dual-fuel electronic control unit (ECU) based on the PowerPC 32-bit microprocessor was developed. It cooperates with the original diesel ECU to control the fuel injection of the diesel/natural gas dual-fuel engine.
Technical Paper

Study on the Effects of Magnetic Field on Magnetorheological Fluid Hydraulic Retarder Braking Torque

2017-09-17
2017-01-2503
In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained, stable braking torque and converts the vehicle kinetic energy into heat taken away by the cooling system when traveling on a long downhill. The conventional hydraulic retarder braking torque is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working chamber. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

Safety Speed Assessment for Driving in Foggy Environment Based on Visibility and Vehicle Brake Performance

2017-03-28
2017-01-0084
Studies show that driving in foggy environment is a security risk, and when driving in foggy environment, the drivers are easy to accelerate unconsciously. The safety information prompted to the driver is mainly from fog lights, road warning signs and the traffic radio. In order to increase the quality of the safety tips to prevent drivers from unintended acceleration and ensure the security of driving in foggy environment, the study proposes a safety speed assessment method for driving in foggy environment, combining the information of driving environment, vehicle’s speed and the multimedia system. The method uses camera which is installed on the front windshield pillar to collect the image about the environment, and uses the dark channel prior theory to calculate the visibility. And by using the environment visibility, the safety speed can be calculated based on the kinematics theory. And it is appropriate for vehicles which have different braking performance.
Technical Paper

SUV Solar Roof with Photo-Thermal Effect for Ventilation ORC System

2016-04-05
2016-01-0240
The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
Technical Paper

Residual Gas Fraction Measurement inside Engine Cylinder Using Infrared Absorption Method with Spark-plug Sensor

2007-07-23
2007-01-1849
In this study, residual gas fraction measurements in a spark-ignition engine were carried out using an optical sensor installed in the spark plug with infrared absorption method. The residual gas fraction inside engine cylinder is proportional to the CO2 concentration. Infrared absorption method was applied and an infrared lamp and optical filter (center wavelength: around 4.3 μm) that coincides with the absorption lines of CO2 was used as a light source.The molar absorption coefficient of CO2 is discussed and compared to results in the HITRAN database. The effect of water vapor absorption doesn't affect the absorption of CO2. The absorption characteristics of CO2 were determined in advance using a constant volume vessel. Molar absorption coefficient depends on the CO2 concentration and ambient pressure and temperature, and wavelength of absorption line.
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. The vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on the Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section ahead of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
Technical Paper

Plasma Temperature of Spark Discharge in a Lean-burn Spark-ignition Engine Using a Time Series of Spectra Measurements

2019-12-19
2019-01-2158
In this research, a spark plug with an optical fiber has been developed to obtain the emission spectra from the spark discharge and flame kernel. This developed spark plug with an optical fiber can obtain the time series of emission spectra from the spark discharge and Initial flame kernel in the real spark-ignition engine using EMCCD spectrometer. The plasma vibrational temperature of the spark discharge can be measured using the emission spectra from the electrically excited CN violet band system. The plasma of the spark discharge and gas rotational temperature of the initial flame kernel can be also measured using emission spectra from OH* radicals (P and R branches). The plasma temperature of the spark discharge was almost 8,000 K and the gas temperature of the Initial flame kernel approached that of the adiabatic flame temperature.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
X