Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Transient simulation of NOx reduction over a Fe-Zeolite catalyst in an NH3-SCR system and study of the performance under different operating conditions

2011-08-30
2011-01-2084
The NO reduction in an ammonia SCR converter has been simulated by a 1D+1D model for a single representative channel to parametrically study the characteristics of the system under typical operating conditions. An appropriate model has been selected interpreting the chemical behavior of the system and the parameters are calibrated based on a comprehensive set of experiments with an Fe-Zeolite washcoated monolith for different feed concentrations, temperatures and flow rates. Physical and chemical properties are determined as well as kinetics and rate parameters and the model has been verified by experimental data at different operating conditions. Three different mechanisms for the surface kinetics to model NO reduction have been assessed and the results have been compared in the cases of steady DeNO performance and transient response of the system. Ammonia inhibition is considered in the model since it has a major effect specifically under transient operating conditions.
Journal Article

The Effect of Cycle-to-Cycle Variations on the NOx-SFC Tradeoff in Diesel Engines under Long Ignition Delay Conditions

2017-09-04
2017-24-0100
Cycle-to-cycle variations in internal combustion engines are known to lead to limitations in engine load and efficiency, as well as increases in emissions. Recent research has led to the identification of the source of cyclic variations of pressure, soot and NO emissions in direct injection common rail diesel engines, when employing a single block injection and operating under long ignition delay conditions. The variations in peak pressure arise from changes in the diffusion combustion rate, caused by randomly occurring in-cylinder pressure fluctuations. These fluctuations result from the excitation of the first radial mode of vibration of the cylinder gases which arises from the rapid premixed combustion after the long ignition delay period. Cycles with high-intensity fluctuations present faster diffusion combustion, resulting in higher cycle peak pressure, as well as higher measured exhaust NO concentrations.
Journal Article

Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment

2014-10-13
2014-01-2822
Simulations for a pressure-assisted multi-stream injector designed for urea-dosing in a selective catalytic reduction (SCR) exhaust gas system have been carried out and compared to measurements taken in an optically accessible high-fidelity flow test rig. The experimental data comprises four different combinations of mass flow rate and temperature for the gas stream with unchanged injection parameters for the spray. First, a parametric study is carried out to determine the importance of various spray sub-models, including atomization, spray-wall interaction, buoyancy as well as droplet coalescence. Optimal parameters are determined using experimental data for one reference operating condition.
Technical Paper

Natural Gas Engines for Cogeneration: Highest Efficiency and Near-Zero-Emissions through Turbocharging, EGR and 3-Way Catalytic Converter

2000-10-16
2000-01-2825
Combustion engines for decentralized power generation or cogeneration in general, are subject to increasingly stringent pollutant emissions regulations. Motivated by the Europe-;wide lowest allowable NOx levels in Switzerland - particularly in the Zurich metropolitan area with 50 mg/Nm3 at 5% O2 - and in close cooperation with industry, the I.C. Engines and Combustion Laboratory (LVV) of the Swiss Federal Institute of Technology Zurich (ETHZ) has investigated some new operating concepts and engine processes in order to overcome the dilemma between low emissions and high efficiency, which is usually encountered in engine optimization. Our final approach thereby involves the Exhaust Gas Recirculation (EGR) combined with stoichiometric mixture (λ = 1) and a 3-way catalytic converter. The engine is supercharged and the intake mixture aftercooled for high power density and thermal efficiency.
Technical Paper

Influence of Water-Diesel Fuel Emulsions and EGR on Combustion and Exhaust Emissions of Heavy Duty DI-Diesel Engines equipped with Common-Rail Injection System

2003-10-27
2003-01-3146
In this paper we investigate the effect of the introduction of water in the combustion chamber of a DI-diesel engine on combustion characteristics and pollutant formation, by using water-diesel fuel emulsions with three distinct water amounts (13%, 21% and 30%). For the measurements we use a modern 4-cylinder DI-diesel engine with high-pressure common rail fuel injection and EGR system. The engine investigations are conducted at constant speed in different operating points of the engine map with wide variations of injection setting parameters and EGR rate. The main concern refers to the interpretation of both measured values and relevant thermodynamic variables, which are computed with analytical instruments (heat release rate, ignition delay, reciprocal characteristic mixing time, etc). The analysis of the measured and computed data shows clear trends and detailed evaluations on the behavior of water-diesel fuel emulsions in the engine process are possible.
Technical Paper

Influence of Injector Diameter (0.2-1.2 mm range) on Diesel Spray Combustion: Measurements and CFD Simulations

2014-04-01
2014-01-1419
In this study, the influence of injector diameter on the combustion of diesel sprays in an optically accessible combustion chamber of marine engine dimensions and conditions has been investigated experimentally as well as numerically. Five different orifice diameters ranging between 0.2 and 1.2 mm have been considered at two different ambient temperatures: a “cold” case with 800 K and a “warm” case with 900 K, resulting in a total of ten different test conditions. In the experiment, the reactive spray flames were characterized by means of high-speed OH* chemiluminescence imaging. The measurements revealed a weak impact of the injector diameter on ignition delay (ID) time and flame lift-off length (LOL) whereas the influence of ambient temperature was found to be more pronounced, consistent with former studies in the literature for smaller orifice diameters.
Journal Article

Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas

2014-10-13
2014-01-2607
Knock is often the main limiting factor for brake efficiency in spark ignition engines and is mostly attributed to auto-ignition of the unburned mixture in front of the flame. In order to study knock in a systematic way, spark angle sweeps with ethanol and iso-octane have been carried out on single cylinder spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed fuel/air mixtures. Much earlier and stronger knock can be observed for iso-octane compared to ethanol at otherwise same engine operating conditions due to the cooling effect and higher octane number of ethanol, leading to different cycle-to-cycle variation behavior. Detailed chemical kinetic mechanisms are used to compute ignition delay times at conditions relevant to the measurements and are compared to empirical correlations available in literature. The different correlations are used in a knock model approach and are tested against the measurement data.
Journal Article

Fluid Dynamic Comparison of AdBlue Injectors for SCR Applications

2015-09-06
2015-24-2502
The injection process of urea-water solution (AdBlue) determines initial conditions for reactions and catalysis and is fundamentally responsible for optimal operation of selective catalytic reduction (SCR) systems. The spray characteristics of four, commercially available, injectors (one air-assisted and three pressure-driven with different nozzle-hole configurations) are investigated with non-intrusive measuring techniques. Injection occurred in the crossflow of a channel blowing preheated air in an exhaust duct similar configuration. The effect of several gas temperatures and flows on the spray propagation and entrainment has been extensively studied by shadow imaging. Shadow images, in addition, show that the spray of the pressure-driven injectors is only marginally affected by the gas crossflow. In contrast, the air assisted spray is strongly deflected by the gas, the effect increasing with increasing gas flow.
Technical Paper

Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines

2019-04-02
2019-01-0260
The current trend in automobiles is towards electrical vehicles, but for the most part these vehicles still require an internal combustion engine to provide additional range and flexibility. These engines are under stringent emissions regulations, in particular, for the reduction of CO2. Gas engines which run lean burn combustion systems provide a viable route to these emission reductions, however designing these engines to provide sustainable and controlled combustion under lean conditions at λ=2.0 is challenging. To address this challenge, it is possible to use a scavenged Pre-Chamber Ignition (PCI) system which can deliver favorable conditions for ignition close to the spark plug. The lean charge in the main combustion chamber is then ignited by flame jets emanating from the pre-chamber nozzles. Accurate prediction of flame kernel development and propagation is essential for the analysis of PCI systems.
Technical Paper

Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine

2012-04-16
2012-01-0825
The behavior of spray auto-ignition and combustion of a diesel spray in a lean premixed methane/air charge was investigated. A rapid compression expansion machine with a free-floating piston was employed to reach engine-relevant conditions at start of injection of the micro diesel pilot. The methane content in the lean ambient gas mixture was varied by injecting different amounts of methane directly into the combustion chamber, the ambient equivalence ratio for the methane content ranged from 0.0 (pure air) to 0.65. Two different nozzle tips with three and six orifices were employed. The amount of pilot fuel injected ranged between 0.8 and 1.8 percent of the total energy in the combustion chamber. Filtered OH chemiluminescence images of the combustion were taken with a UV-intensified high-speed camera through the optical access in the piston.
Journal Article

Experimental Investigation of Multi-In-Cylinder Pyrometer Measurements and Exhaust Soot Emissions Under Steady and Transient Operation of a Heavy-Duty Diesel Engine

2013-09-08
2013-24-0177
Future engine emission legislation regulates soot from Diesel engines strictly and requires improvements in engine calibration, fast response sensor equipment and exhaust gas aftertreatment systems. The in-cylinder phenomena of soot formation and oxidation can be analysed using a pyrometer with optical access to the combustion chamber. The pyrometer collects the radiation of soot particles during diffusion combustion, and allows the calculation of soot temperature and a proportional value for the in-cylinder soot density (KL). A four-cylinder heavy-duty Diesel engine was equipped in all cylinders with prototype pyrometers and state of the art pressure transducers. The cylinder specific data was recorded crank angle-resolved for a set of steady-state and transient operating conditions, as well as exhaust gas recirculation (EGR) addition and over a wide range of soot emissions.
Technical Paper

Comparative Study of Ignition Systems for Lean Burn Gas Engines in an Optically Accessible Rapid Compression Expansion Machine

2013-09-08
2013-24-0112
Ignition systems for large lean burn gas engines are challenged by large energy deposition requirements to ensure stable and reliable inflammation of the premixed charge. In this study, two different ignition systems are investigated experimentally: ignition by means of injecting a small amount of diesel spray and its subsequent autoignition is compared to the ignition with an un-scavenged pre-chamber spark plug over a wide range of engine relevant conditions such as methane equivalence ratios and thermomechanical states. The ignition behavior as well as the combustion phase of the two systems is investigated using an optically accessible Rapid Compression Expansion Machine (RCEM). Filtered OH-chemiluminescence images of the ignition and combustion were taken with a UV intensified high speed camera through the piston window.
Technical Paper

Clean Engine Vehicle A Natural Gas Driven Euro-4/SULEV with 30% Reduced CO2-Emissions

2004-03-08
2004-01-0645
The goal of the Clean Engine Vehicle project (CEV) was the conversion of a gasoline engine to dedicated natural gas operation in order to achieve a significant reduction in CO2 emissions. The targeted reduction was 30% compared with a gasoline vehicle with similar performance. Along with the reduction in emissions, the second major requirement of the project, however, was compliance of the results with Euro-4 and SULEV emission limits. The project entailed modifications to the engine and the pre-existing model-based engine control system, the introduction of an enhanced catalytic converter and downsizing and turbocharging of the engine. As required by the initiators of the project, all components used were commonly available, some of them just being optimized or modified for natural gas operation.
Technical Paper

Characterization of the Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-0834
The physical behavior of the combustion process in a jet-guided direct injection spark ignition engine has been investigated with three different measurement techniques. These are flame visualization by use of endoscopy, ion-current sensing at 16 different locations in the combustion chamber and the estimation of the flame temperature as well as soot concentration based on multi-wavelength-pyrometry. The results of all these measurement techniques are in good agreement between each other and give a coherent picture of the physical behavior of the combustion process and make it possible to characterize the main influence parameters on combustion. This serves as a basis for validation and improvement of simulation tools for the engine thermodynamics and combustion.
Technical Paper

Characterization of Mixture Formation in a Direct Injected Spark Ignition Engine

2001-05-07
2001-01-1909
We have performed simulations and experiments to characterize the mixture formation in spray-guided direct injected spark ignition (DISI) gasoline engines and to help to understand features of the combustion process, which are characteristic for this engine concept. The 3-D computations are based on the KIVA 3 code, in which basic submodels of spray processes have been systematically modified at ETH during the last years. In this study, the break-up model for the hollow-cone spray typical for DISI engines has been validated through an extended comparison with both shadowgraphs and Mie-scattering results in a high-pressure-high-temperature, constant volume combustion cell at ambient conditions relevant for DISI operation, with and without significant droplet evaporation. Computational results in a single-cylinder research engine have been then obtained at a given engine speed for varying load (fuel mass per stroke), swirl and fuel injection pressure.
Technical Paper

CMC Model Applied to Marine Diesel Spray Combustion: Influence of Fuel Evaporation Terms

2014-10-13
2014-01-2738
This study presents an application of the conditional moment closure (CMC) combustion model to marine diesel sprays. In particular, the influence of fuel evaporation terms has been investigated for the CMC modeling framework. This is motivated by the fact that substantial overlap between the dense fuel spray and flame area is encountered for sprays in typical large two-stroke marine diesel engines which employ fuel injectors with orifice diameters of the order of one millimeter. Simulation results are first validated by means of experimental data from the Wärtsilä optically accessible marine spray combustion chamber in terms of non-reactive macroscopic spray development. Subsequently, reactive calculations are carried out and validated in terms of ignition delay time, ignition location, flame lift-off length and temporal evolution of the flame region. Finally, the influence of droplet terms on spray combustion is analyzed in detail.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

A Computational Investigation of Unsteady Heat Flux Through an I.C. Engine Wall Including Soot Layer Dynamics

1997-02-24
970063
This paper deals with the influence of a wall soot layer of varying thickness on the unsteady heat transfer between the fluid and the engine cylinder wall during a full cycle of a four-stroke Diesel engine operation. For that purpose a computational investigation has been carried out, using a one-dimensional model of a multi-layer solid wall for simulating the transient response within the confinement of the combustion chamber. The soot layer is thereby of varying thickness over time, depending on the relative rates of deposition and oxidation. Deposition is accounted for due to a thermophoretic mechanism, while oxidation is described by means of an Arrhenius type expression. Results of the computations obtained so far show that the substrate wall temperature has a significant effect on the soot layer dynamics and thus on the wall heat flux to the combustion chamber wall.
X