Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Technical Paper

Ricebran Oil Biodiesel's Performance, Emission and Endurance Test on a CIDI Transport Engine

2008-01-09
2008-28-0066
Increased environmental awareness and depletion of resources are driving industry to develop alternative fuels that are environmentally more acceptable. Fatty acids esters (biodiesel) are known to be good alternative fuels. Due to economic reasons, the use of cheap raw materials for biodiesel production is preferred. In this case, ricebran oil, non-edible grade is used. Base catalyzed transesterification of ricebran oil is investigated and process parameters for ricebran biodiesel production are optimized. Various properties like viscosity, density, flash point, calorific value of biodiesel thus prepared are characterized as per ASTM D6751 and found comparable to mineral diesel. Steady state engine dynamometer test at 1800 rpm has been carried out to evaluate the performance and emission characteristics of a medium duty transportation DI diesel engine. Emission tests with all the fuel blends have also been carried out using European 13 MODE test (ECE R49).
Technical Paper

Potential of Di-Ethyl Ether in Reducing Emissions from Heavy-Duty Tractors

2023-04-11
2023-01-0285
Considering the demand for sustainable transport, alternative fuels are a keen research topic for IC engine researchers. Among various alternative fuels being explored, Di-ethyl ether (DEE) is gaining popularity off-late for compression-ignition (CI) engines owing to its high cetane rating, oxygen presence in its molecular structure, and lower carbon content. This study explores the suitability of DEE blends in tractor engines. DEE blends [15% and 30% (v/v)] with diesel were compared with baseline diesel for combustion, and emission characterisation, keeping all parameters identical, including the fuel injection timings. Results were analysed for different engine loads at 1500 rpm. Delayed combustion was observed with DEE blends with diesel, possibly due to a higher cooling effect from DEE vaporisation and retarded dynamic fuel injection due to its higher compressibility. However, the DEE blend fuelled engine performance was comparable to baseline diesel.
Technical Paper

Performance, Emission and Combustion Characteristics of Jatropha Oil Blends in a Direct Injection CI Engine

2009-04-20
2009-01-0947
Vegetable oils have energy content suitable to be used as compression ignition (CI) engine fuel. However, several operational and durability problems of using straight vegetable oils in CI engines are reported in the literature, which are primarily caused by their higher viscosity and low volatility compared to mineral diesel. The viscosity can be brought in acceptable range by (i) chemical process of transesterification, (ii) blending of oil with mineral diesel or (iii) by heating the vegetable oil using exhaust gas waste heat. Reduction of viscosity by blending or exhaust gas heating saves the chemical processing cost of transesterification. Present experimental investigations were carried out for evaluating combustion, performance and emission behavior of Jatropha oil blends in unheated conditions in a direct injection CI engine at different load and constant engine speed (1500 rpm).
Technical Paper

Performance, Emission and Combustion Characteristics of Biodiesel (Waste Cooking Oil Methyl Ester) Fueled IDI Diesel Engine

2008-04-14
2008-01-1384
Biodiesel (fatty acid methyl ester) is a non-toxic and biodegradable alternative fuel that is obtained from renewable sources. A major hurdle in the commercialization of biodiesel from virgin oil, in comparison to petroleum-based diesel, is its cost of production, primarily the raw material cost. Used cooking oils or waste cooking oils are economical sources for biodiesel production, which can help in commercialization of biodiesel. However, the products formed during cooking/frying (such as free fatty acids and various polymerized triglycerides) affect the transesterification reaction and the biodiesel properties. In present experimental investigations, wastecooking oil obtained from restaurant was used to produce biodiesel through transesterification process and the chemical kinetics of biodiesel production was studied. Biodiesel was blended with petroleum diesel in different proportions.
Journal Article

Particulate Morphology and Toxicity of an Alcohol Fuelled HCCI Engine

2014-04-15
2014-01-9076
Homogeneous charge compression ignition (HCCI) engines are attracting attention as next-generation internal combustion engines mainly because of very low NOx and PM emission potential and excellent thermal efficiency. Particulate emissions from HCCI engines have been usually considered negligible however recent studies suggest that PM number emissions from HCCI engines cannot be neglected. This study is therefore conducted on a modified four cylinder diesel engine to investigate this aspect of HCCI technology. One cylinder of the engine is modified to operate in HCCI mode for the experiments and port fuel injection technique is used for preparing homogenous charge in this cylinder. Experiments are conducted at 1200 and 2400 rpm engine speeds using gasoline, ethanol, methanol and butanol fuels. A partial flow dilution tunnel was employed to measure the mass of the particulates emitted on a pre-conditioned filter paper.
Technical Paper

Numerical and Experimental Investigation of Oil Jet Cooled Piston

2005-04-11
2005-01-1382
Thermal loading of diesel engine pistons has increased dramatically in recent years due to applications of various advanced technologies to meet low emission and high power requirements. Control of piston temperatures by cooling of pistons has become one of the determining factors in a successful engine design. The pistons are cooled by oil jets fired at the underside from the crankcase. Any undesirable piston temperature rise may lead to engine seizure because of piston warping. However, if the temperature at the underside of the piston, where oil jet strikes the piston, is above the boiling point of the oil being used, it may contribute to the mist generation. This mist significantly contribute to the non-tail pipe emissions in the form of unburnt hydrocarbons (UBHC's), which has unfortunately not been looked into so seriously, as the current stress of all the automobile manufacturers is on meeting the tail pipe emission legislative limits.
Technical Paper

Numerical Predictions of In-Cylinder Phenomenon in Methanol Fueled Locomotive Engine Using High Pressure Direct Injection Technique

2021-04-06
2021-01-0492
Petroleum products are used to power internal combustion engines (ICEs). Emissions and depletion of petroleum reserves are important questions that need to be answered to ensure existence of ICEs. Indian Railways (IR) operates diesel locomotives, which emit large volume of pollutants into the environment. IR is looking for an alternative to diesel for powering the Locomotives. Methanol has emerged as a replacement for petroleum fuels because it can be produced from renewable resources as well as from non-renewable resources in large quantities on a commercially viable scale. It has similar/superior physico-chemical properties, which reduce tailpipe emissions significantly. It is therefore necessary to understand the in-cylinder phenomenon in methanol fueled engines before its implementation on a large-scale.
Technical Paper

Numerical Investigations Of Piston Cooling Using Oil Jet

2004-01-16
2004-28-0061
Thermal loading of diesel engine pistons has increased dramatically in recent years due to applications of various technologies to meet low emission and high power requirements. Control of piston temperatures by cooling of these pistons has become one of the determining factors in a successful engine design. The pistons are cooled by oil jets fired at the underside from the crankcase. Any undesirable piston temperature rise may lead to engine seizure due to piston warping. However, if the temperature at the underside of the piston, where the oil jet strikes the piston, is above the boiling point of the oil being used, it may contribute to the mist generation. This mist may significantly contribute to the non-tail pipe emissions in the form of unburnt hydrocarbons (UBHC). The problem of non-tail pipe emissions has unfortunately not been looked into so seriously, as the current stress of all the automobile manufacturers is on meeting the tail -pipe emission legislative limits.
Technical Paper

Novel Methodology to Utilise Neem (Azadirachta Indica) Oil in a Direct Injection Compression Ignition Engine: Performance and Emissions Characterization

2009-12-13
2009-28-0039
The world energy demand has witnessed uncertainties in two dimensions. The scarcity and depletion of conventional petroleum sources are causes of great concern worldwide. Combustion of fossil fuels has led to unprecedented rise in the global CO2 level, leading to global warming. Therefore, efforts are underway in several countries to search for suitable alternative fuels that are environment friendly. Vegetable oils of non-edible nature are such alternative fuels, which can form part of potential solution. Vegetable oils, due to their agricultural origin, are able to reduce CO2 emissions to the atmosphere along with import substitution of petroleum products In the present research, experiment were designed to study the effect of reducing Neem oil's high viscosity by increasing the fuel temperature and thereby its effect on combustion and emission characteristics of the engine.
Technical Paper

Noise, Vibrations and Combustion Investigations of Preheated Jatropha Oil in a Single Cylinder Genset Engine

2015-04-14
2015-01-1668
High viscosity of vegetable oil causes ignition problems when used in compression ignition engines. There is a need to reduce the viscosity before using it as engine fuel. Preheating and pre-treating of vegetable oils using waste heat of exhaust gases is one of the techniques, which reduces the viscosity and makes it possible to use it as alternate fuel for some niche applications, without requiring major modifications in the engine hardware. Several applications such as decentralized power generation, agricultural engines, and water pumping engines, can use vegetable oils as an alternative fuel. In present investigation, performance, combustion, and emission characteristics of an engine using preheated 20% blend of Jatropha oil with mineral diesel (J20) has been evaluated at a constant speed (1500 rpm) in a single cylinder four stroke direct injection diesel engine.
Technical Paper

Measurement of Lubricating Oil Film Thickness between Piston Ring -liner Interface in an Engine Simulator

2008-01-09
2008-28-0071
The interface between the piston rings and cylinder liner play an important role in total frictional losses and mechanical wear of internal combustion engine and is increasingly coming under scrutiny as legislated particulate emission standards are getting more and more stringent. The capacitance method is used for measurement of minimum oil film thickness between piston ring and liner interface. Measurement of capacitance formed between the piston ring and a probe mounted flush in the liner provides an accurate means of determining the oil film thickness provided that the region between the probe and liner is flooded with oil and dielectric constant of the oil is known. This paper presents detailed design and measurement of lubricating oil film thickness using capacitive micro sensor in a non-firing engine simulator. Lubricating oil film thickness was found to vary between 0.2μm to 8μm in the non firing engine simulator.
Technical Paper

Laser Ignition of Hydrogen-Air Mixture in a Combustion Bomb

2008-01-09
2008-28-0033
Due to the demands of the market to increase efficiency and power density of large MW size gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Within this broad range investigation, laser plasmas were generated by ns Nd-YAG laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen- air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. In this way, relevant parameters were acquired allowing estimation/ development of future laser ignition systems.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Gasohol Sprays Simulations of a Multi-Hole GDI Injector in Engine-Like Conditions

2021-04-06
2021-01-0549
Mixture formation in GDI engine is considered crucial in determining combustion and emissions characteristics, which mainly depend on fuel spray quality. However, spray characteristics change with variations in control parameters such as fuel injection parameters, fuel injection strategy, engine operating conditions, and fuel properties. Growing research interest in the use of methanol as an additive with gasoline has motivated the need for deeper investigations of spray characteristics of these fuels. Although, it can be noted that sufficient literature is available in the area of spray characterization under several independent influencing factors, however, comparative analysis of gasohol spray behavior under different ambient conditions is hardly studied.
Technical Paper

Feasibility Assessment of Methanol Fueling in Two-Wheeler Engine Using 1-D Simulations

2021-04-06
2021-01-0382
Alternative fuels, coupled with advanced engine technologies, are potential solutions to overcome energy crisis and environmental degradation challenges, that transport sector faces. Methanol has emerged as a potential candidate as an alternate fuel due to adequate availability of indigenous feedstocks, such as coal, biomass, and municipal solid waste (MSW). Policy makers of several countries are focusing on developing roadmap for methanol fueled vehicles, especially in developing countries like China and India. These countries have the largest two-wheeler market globally; therefore, methanol adaptability on 2-wheeler engine becomes important national priority. This study is aimed at feasibility assessment of methanol (M100) fueled two-wheeler engine using simulations. Present study was divided into four different phases.
Technical Paper

Experimental and Numerical Investigations of Jet Impingement Cooling of Piston of Heavy-Duty Diesel Engine for Controlling the Non-Tail Pipe Emissions

2007-04-16
2007-01-0763
The development of more efficient and powerful internal combustion engines requires the use of new and advanced engine technologies. These advanced engine technologies and emission requirements for meeting stringent global emission norms have increased the power densities of engine leading to downsizing. In all these engines, cylinder head and liner are normally cooled but the piston is not cooled, making it susceptible to disintegration/ thermal damage. Material constraints restrict the increase in thermal loading of piston. High piston temperature rise may lead to engine seizure because of piston warping. So pistons are additionally cooled by oil jet impingement from the underside of the piston in heavy duty diesel engines. However, if the temperature at the underside of the piston, where the oil jet strikes the piston, is above the boiling point of the oil, it may contribute to the mist generation.
Technical Paper

Experimental Investigations on the Effect of Liner Surface Properties on Wear in Non-Firing Engine Simulator

2004-03-08
2004-01-0605
Several experimental studies have been conducted for evaluating coefficient of friction and wear in simulated engine conditions using a piston ring segment and a liner piece rubbing against each other in reciprocating mode under load and lubricated conditions. In the present experimental investigation, a non-firing engine simulator has been developed in order to simulate engine conditions to a much closer extent. This machine can operate at similar linear speed, stroke, and load and can simulate almost similar engine operating conditions except firing pressures. This machine can also be used for comparing liners with different surface properties and the effects of surface texture on wear and oil consumption. One cylinder liner has been used for experimentation and the wear and surface properties behaviour were evaluated at several locations in the liner. Surface profile, roughness parameters are evaluated at several locations in the liner and at the top compression ring.
Journal Article

Experimental Investigations of the Tribological Properties of Lubricating Oil from Biodiesel Fuelled Medium Duty Transportation CIDI Engine

2008-04-14
2008-01-1385
Biodiesel is mono alkyl ester derived from vegetable oils through transesterification reaction and can be used as an alternative to mineral diesel. In the present research, methyl ester of rice-bran oil (ROME) is produced through transesterification of rice-bran oil using methanol in presence of sodium hydroxide (NaOH) catalyst. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized and found comparable to diesel. On the basis of previous research for performance, emission and combustion characteristics, a 20% blend of ROME (B20) was selected as optimum biodiesel blend for endurance test. Endurance test of 100 hours was conducted on a medium duty direct injection transportation diesel engine. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel and engine fuelled with 20% biodiesel blend.
X