Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 31764
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“SODART” Telescope Silicon Detector Cooling System (Thermal Test Results of the Scale-Down Model)

1992-07-01
921365
The onboard “SODART” telescope silicon detector cooling system of the “Spectrum-X-Gamma” observatory, which is designed for the space objects X-ray radiation study, is described. The scale-down model of the passive cooling system description and thermal vacuum test results of this model are given. In the real cooling system the minimal detector temperature at 300 mW heat release is expected about 107 K.
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“OptiVent” - A New Approach for Controlling Mass Air Flow and Combustion in Direct Injection SI-Engines

2013-04-08
2013-01-0592
Combustion concepts for future SI engines try to meet CO2-emission commitments and legislation all over the world. Where the Diesel engine has an advantage by principle, the efficiency of the SI engine has to be improved significantly, while of course the exhaust emissions must not become worse. An approach is to reduce the gas exchange losses using fully variable valve trains on the intake side of the combustion engine. OptiVent is a patented new way of controlling the mass air flow in the cylinder of a combustion engine using opening valves during the compression phase of a four stroke engine. This technology regards a wider range of variability on the valvetrain components of the engine especially for opening the valves more than one time during a cycle. On the other hand it is necessary to combine this technology with direct injection to avoid fuel losses in the exhaust system and raising the exhaust hydrocarbon emission of the engine.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

“MONOGAL”: A New Anti-Corrosion Material for the Automotive Industry

1982-02-01
820335
MONOGAL is a coated steel developped to improve the corrosion resistance of exposed automotive body applications. Its process os based on the brittleness of the η zinc coating in a range of temperatures below the melting point of the zinc. MONOGAL is produced on a hot dip galvanizing line; at the exit of the pot the free zinc is brushed off the light side of the differentially coated sheet. Side 1 of MONOGAL presents a very thin and continuous layer of iron-zinc diffusion alloy with no free zinc. Side 2 is a standard G90 or G60 zinc coating. The iron-zinc alloy layer has excellent anti-galling properties which improve the formability of MONOGAL over two side hot dip galvanized steel with the same r value. MONOGAL also shows good weldability, paintability and corrosion resistance.
Technical Paper

“Living and Mobility” - Minimization of the Overall Energy Consumption by Using Synergetic Effects and Predictive Information

2012-04-16
2012-01-0496
Issues relating to the reduction of CO₂ emissions and energy consumption are currently more important than ever before. In the construction engineering and automotive sectors research and development efforts are focused closely on efficient buildings and automobiles. The designated target is a reduction in greenhouse gas emissions and overall energy demand. However, almost all approaches focus solely on either "buildings" or "mobility." By considering both aspects as a single holistic system, further energy saving potential arises due to synergetic effects. The goal of current research projects relating to Smart Homes and Vehicle to Building (V2B) is to smooth the electrical load profile on a household level rather than to reduce the individual-related total energy consumption and thereby the CO₂ emissions.
Technical Paper

“KATPROG” for the Determination of an Optimal Cost Effective Catalyst System

2001-01-10
2001-26-0016
An two-dimensional axial symmetrical finite volume model will be introduced for the calculation of catalytic converters. It is able to predict transient temperatures and conversion rates in different converter systems according to the driving conditions. Input data are the mass-flow rate, the converter inlet temperature and the raw emissions. The performance of this model is demonstrated on an Indian motorcycle application. Cold start behavior and peak temperatures are investigated. This model has proven to be an effective tool for the preselection of an optimal cost effective catalyst system.
Technical Paper

“Investigation of High Achievable Pollutant Reduction on a “State of the Art” Indian 2 Wheelers - Technology Road Map to a Cleaner Air”

2015-11-17
2015-32-0802
Affordable, efficient and durable catalytic converters for the two and three wheeler industry in developing countries are required to reduce vehicle emissions and to participate in a cleaner and healthier environment. As a contribution Continental Emitec started a comprehensive testing program with a state of the art 180 cc Bharat Stage (BS) III Indian motorcycle. The program consists of testing the state of the art of Metallic substrates with structured foils with various catalyst sizes and positions (original or close coupled). The publication presents a short literature survey and the results of the investigation with a big catalyst volume mounted in underfloor position as well as in close coupled position, gained over the World-wide harmonized Motorcycle Test Cycle, considering the two possible vehicle classifications of this motorcycle, Sub-Class 2.1 and Sub-Class 2.2.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Hot Tube Test”-Analysis of Lubricant Effect on Diesel Engine Scuffing

1984-02-01
840262
To prevent engine scuffing in the field a new laboratory test called the Hot Tube Test has been established in order to evaluate the high temperature stability of diesel engine oils. In a strip mining application field test using 47 bulldozers powered by the same engine type, half of the engines suffered from piston scuffing failures when operated on a variety of commercially available API CD quality SAE 30 Grade engine oils. All the field test oils have been investigated using the Hot Tube Test, and an analysis of the results indicates that it would be possible to accurately predict scuffing failures by this test method. Furthermore, the reliability of this analysis has been verified by bench engine testing on reference oils. The reasons why the Hot Tube Test predicts the anti-scuffing performance of engine oils are discussed.
Technical Paper

“Future” Diesel Fuel Compositions - Their Influence on Particulates

1988-08-01
881173
Five different diesel fuels, having been made available by the mineral oil industry within the framework of a research program of the Coordinating European Council (CEC/PF-26), were examined in addition to this program by the Klöckner-Humboldt-Deutz AG by means of the 13-mode test in accordance with the former US legislation and the ECE regulation No. 49 and by US Transient Tests. The results have been compared with results based on commercial European diesel fuel. There has been observed the emission behaviour of an 8-cylinder NA engine with a “state of the art” direct fuel injection system by particularly taking into consideration the particulate emission and the particulate components. The gaseous emissions, particularly CO and HC, are unfavourably influenced by low cetane numbers being associated with increased aromaticity in the diesel fuel.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Evaluation of the Drift of vehicle Inspection/Maintenance Emission Analyzers in use- A California Case Study”

1989-05-01
891119
Quality assurance (QA) in motor vehicle emissions inspection/maintenance (I/M) programs is a continuing concern, especially in decentralized programs with hundreds or even thousands of licensed stations. The emissions analyzers used in such stations are an important focus of governmental QA efforts because of the central role of analyzers in determining which vehicles need to be repaired. Therefore, the In-use performance of I/M emission analyzers has a large impact on the quality of 1/M programs as a whole. This paper reports on the results of an investigation in California designed to determine in-use performance of emission analyzers in the field. The investigation was designed to evaluate both drift rates and the ability of analyzer systems with automatic gas calibration capability to correct analyzer responses outside of accepted tolerances.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
Technical Paper

“DELRIN” ACETAL RESIN —a new engineering material

1959-01-01
590033
“DELRIN” is a new thermoplastic which offers high strength, excellent thermal stability, good fatigue life, low creep, and excellent solvent resistance. This paper describes the physical and chemical properties of the material, and the range of possible uses. The material is easily fabricated into complex shapes by standard injection-molding techniques. Also, it can be easily joined to itself or to other materials. The authors think that the material offers advantages over metals in its good fric-tional properties, abrasion resistance, and corrosion resistance.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

“CDaero” - A Parametric Aerodynamic Drag Prediction Tool

1998-02-23
980398
The objective of the development of the aerodynamic drag predictive tool CDaero was for use as a module for the Automobile Design Support System (AutoDSS). CDaero is an empirically based drag coefficient predictive tool based initially on the MIRA (Motor Industry Research Association) algorithm. The development philosophy was to be able to predict the aerodynamic drag coefficient of an automobile with knowledge of the features of the surface geometry control curves. These are the curves that control the 3-dimensional geometry as seen in the profile, plan and front and rear views. CDaero has been developed in a computing environment using the equation solver TKSolver™. Fifty-one input feature values are first determined from the automobile geometry and then entered into the program. CDaero models the drag coefficient with thirteen different components covering the basic body, as well as additional components such as the wheels, mud flaps, etc.
X