Refine Your Search

Topic

Search Results

Standard

Wrought copper and Copper Alloys

2002-12-20
HISTORICAL
J463_200212
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Wrought Copper and Copper Alloys

2018-01-10
CURRENT
J463_201801
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Valve Seat Insert Information Report

2017-12-20
CURRENT
J1692_201712
This SAE Information Report provides engineers and designers with: a Types of valve seat inserts and their nomenclature b Valve seat insert alloy designations and their chemistries c Valve seat insert alloy metallurgy d Typical mechanical and physical properties of insert alloys e Recommended interference fits f Installation procedures g Application considerations
Standard

Use of Terms Yield Strength and Yield Point

2017-10-10
CURRENT
J450_201710
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

Ultrasonic Inspection

2018-01-09
CURRENT
J428_201801
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

ULTRASONIC INSPECTION

1991-03-01
HISTORICAL
J428_199103
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

Tensile Test Specimens

1999-05-20
CURRENT
J416_199905
When required, unless otherwise specified in the SAE Standards or Recommended Practices, tensile test specimens for metals shall be selected and prepared in accordance with this report. ASTM E 8, Methods of Tension Testing of Metallic Materials, gives more detailed information on tensile testing procedure, and ASTM E 4, Methods of Load Verification of Testing Machines, provides information on testing equipment calibration. In recommending these specimens for use in tensile tests it is not intended to exclude entirely the use of other test specimens for special materials or for special forms of material. It is, however, recommended that these specimens be used wherever it is feasible. Machining of specimens shall be done in such a manner as to avoid leaving severe machining strains in the material. Specimens shall be finished so that the surfaces are smooth and free from nicks and tool marks. All ragged edges shall be smoothed.
Standard

Sintered Tool Materials

2017-12-20
CURRENT
J1072_201712
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

Sintered Carbide Tools

2018-01-09
CURRENT
J439_201801
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

Selection of Zinc and Zinc-Alloy (Hot-Dipped and Electrodeposited) Coated Steel Sheet

2015-04-28
CURRENT
J1562_201504
Zinc and zinc-alloy coated steel is used to enhance a structure’s protection against corrosion degradation. For the purpose of this SAE Recommended Practice, a galvanized coating is defined as a zinc or zinc-alloy metallic coating. The selection of the optimum galvanized steel sheet product depends on many factors, the most important being: desired corrosion protection, formability, weldability, surface characteristics, and paintability. The trade-offs of these product characteristics are more complex than is the case with uncoated steel sheet products.
Standard

SINTERED TOOL MATERIALS

1977-02-01
HISTORICAL
J1072_197702
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

SINTERED CARBIDE TOOLS

1977-02-01
HISTORICAL
J439_197702
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

SINTERED CARBIDE TOOLS

1977-02-01
HISTORICAL
J439A_197702
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

Restricted Hardenability Bands for Selected Alloy Steels

2010-02-15
CURRENT
J1868_201002
Restricted hardenability steels have been in use for some time but the specific restrictions for a particular grade depend upon customer needs and vary from mill to mill. Such steels are desirable to provide more controlled heat treatment response and dimensional control for critical parts. Because of increasing interest in steels with restricted hardenability, the SAE Iron and Steel Technical Committee directed Division 8 to prepare a set of standard steels with restricted hardenability. In 1993, the American Society for Testing and Materials (ASTM) adopted the twelve SAE restricted hardenability steels and added ten more. SAE decided to include in SAE J1868 the additional 10 steels. In general, steels with restricted hardenability (RH steels) will exhibit a hardness range not greater than 5 HRC at the initial position on the end-quench hardenability bar and not greater than 65% of the hardness range for standard H-band steels (see SAE J1268) in the "inflection" region.
Standard

Penetrating Radiation Inspection

2018-01-09
CURRENT
J427_201801
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

PENETRATING RADIATION INSPECTION

1991-03-01
HISTORICAL
J427_199103
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
X