Refine Your Search

Search Results

Viewing 1 to 19 of 19
Standard

Testing Dynamic Properties of Elastomeric Isolators

1999-05-01
HISTORICAL
J1085_199905
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Standard Rainflow File Format

2018-08-24
CURRENT
J2623_201808
This SAE Standard provides a definition of a rainflow file format. This type of simple text file would contain all relevant information about the rainflow cycle content of a time history. Included information are Comments, Signal Range, Signal Mean, Number of Cycles, Signal Maximum, Signal Minimum. Rainflow cycle counting has become the most accepted procedure for identifying material fatigue relevant cycles in complex variable amplitude load time histories. The cycle counting methods account for the effects of material plasticity and material memory of prior deformation, and the resulting compressed history information is used by durability analysts to estimate the effects of a given service or test history.
Standard

Standard Rainflow File Format

2002-04-30
HISTORICAL
J2623_200204
This SAE Standard provides a definition of a rainflow file format. This type of simple text file would contain all relevant information about the rainflow cycle content of a time history. Included information are Comments, Signal Range, Signal Mean, Number of Cycles, Signal Maximum, Signal Minimum. Rainflow cycle counting has become the most accepted procedure for identifying material fatigue relevant cycles in complex variable amplitude load time histories. The cycle counting methods account for the effects of material plasticity and material memory of prior deformation, and the resulting compressed history information is used by durability analysts to estimate the effects of a given service or test history.
Standard

Recommended Guidelines for Load/Deformation Testing of Elastomeric Components

2017-01-05
CURRENT
J1636_201701
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

RECOMMENDED GUIDELINES FOR LOAD/DEFORMATION TESTING OF ELASTOMERIC COMPONENTS

1993-02-01
HISTORICAL
J1636_199302
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2003-12-03
HISTORICAL
J2609_200312
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2018-08-24
CURRENT
J2609_201808
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
Standard

Method of Viscosity Test for Automotive Type Adhesives, Sealers, and Deadeners

2021-01-07
CURRENT
J1524_202101
This SAE Recommended Practice contains a series of test methods for use in measuring the viscosity of automotive-type adhesives, sealers, and deadeners. The test methods which are contained in this document are as follows: 1.1 Brookfield® Method 1.2 Castor-Severs Rheometer or Pressure Flowmeter 1.3 Penetrometer 1.4 Capillary Rheometer 1.5 Plate Rheometers
Standard

Method for Evaluating the Paintable Characteristics of Automotive Sealers

2013-07-09
CURRENT
J1800_201307
This SAE Recommended Practice sets forth a method for testing and evaluating the paintable characteristics of automotive sealers. This document contains three samples preparation procedures: Method #1: Topcoat over cured primer and cured sealer Method #2: Topcoat over cured sealer Method #3: Topcoat over uncured sealer
Standard

METHOD OF VISCOSITY TEST FOR AUTOMOTIVE TYPE ADHESIVES, SEALERS, AND DEADENERS

1995-08-01
HISTORICAL
J1524_199508
This SAE Recommended Practice contains a series of test methods for use in measuring the viscosity of automotive-type adhesives, sealers, and deadeners. The test methods which are contained in this document are as follows: 1.1 Brookfield® Method 1.2 Castor-Severs Rheometer or Pressure Flowmeter 1.3 Penetrometer 1.4 Capillary Rheometer 1.5 Plate Rheometers
Standard

Laboratory Cyclic Corrosion Test

2003-12-01
HISTORICAL
J2334_200312
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
Standard

Laboratory Cyclic Corrosion Test

2016-04-05
CURRENT
J2334_201604
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2007-06-15
HISTORICAL
J2800_200706
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2016-04-01
CURRENT
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
CURRENT
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

GUIDELINES FOR LABORATORY CYCLIC CORROSION TEST PROCEDURES FOR PAINTED AUTOMOTIVE PARTS

1993-10-13
HISTORICAL
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

ELASTOMERIC BUSHING "TRAC" APPLICATION CODE

1994-10-01
HISTORICAL
J1883_199410
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
X