Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Technical Paper

Human Performance Evaluation of Heavy Truck Side Object Detection Systems

1995-02-01
951011
Side object detection systems (SODS) are collision warning systems which alert drivers to the presence of traffic alongside their vehicle within defined detection zones. The intent of SODS is to reduce collisions during lane changes and merging maneuvers. This study examined the effect of right SODS on the performance of commercial vehicle drivers as a means of assessing the impact of these systems on safety. In this study, eight professional truck drivers drove a tractor-semitrailer equipped with four different sets of SODS hardware or side view mirror configurations. These subjects had no previous experience with SODS. Subjects were tested with two right SODS (a radar-based system and an ultrasonic-based system), a fender-mounted convex mirror, and, for comparison, standard side view mirrors only. For each case, subjects drove the test vehicle through a set route for one day.
Technical Paper

Hardware Evaluation of Heavy Truck Side and Rear Object Detection Systems

1995-02-01
951010
This paper focuses on two types of electronics-based object detection systems for heavy truck applications: those sensing the presence of objects to the rear of the vehicle, and those sensing the presence of objects on the right side of the vehicle. The rearward sensing systems are intended to aid drivers when backing their vehicles, typically at very low “crawl” speeds. Six rear object detection systems that were commercially available at the time that this study was initiated were evaluated. The right side looking systems are intended primarily as supplements to side view mirror systems and as an aid for detecting the presence of adjacent vehicles when making lane changes or merging maneuvers. Four side systems, two commercially available systems and two prototypes, were evaluated.
Technical Paper

An Evaluation of Electronic Pedestrian Detection Systems for School Buses

1996-12-01
960518
Most fatalities due to school bus accidents involve pedestrians being struck by the bus. All too frequently the school bus strikes a disembarking passenger because the driver was unaware of their presence near the bus. To try to prevent this type of accident, two Doppler microwave radar-based pedestrian detection systems have been developed and are commercially available. These systems supplement regular school bus mirrors. They operate only while the bus is stationary. Both systems detect moving pedestrians either directly in front of or to the right of the bus. The National Highway Traffic Safety Administration has performed a three-part evaluation of these pedestrian detection systems. The first part measured the field of view of each system's sensors. The second part evaluated the effectiveness and appropriateness of each system's driver interface. The third part was a small-scale operational evaluation.
X