Refine Your Search

Topic

Search Results

Technical Paper

Use of Dissimilar Hardware Architecture to Mitigate Design Errors in a Flight Control System Application

2009-10-06
2009-36-0160
This paper aims at discussing the use of dissimilar hardware architecture to mitigate DESIGN ERRORS in a flight control system application, as one of the possible design techniques that, combined with the usage of development processes, will satisfy the safety objectives for airborne systems. To accomplish its purpose, the paper starts by understanding the origins of DESIGN ERRORS in micro-coded devices and the concerns of airworthiness certification authorities (or simply certification authorities from now on). After that, an overview of the aeronautical industry efforts in terms of development processes and certification requirements to mitigate DESIGN ERRORS will be presented. At this point, the dissimilar architecture is proposed as an effective mean to mitigate the problem of DESIGN ERRORS. Finally, a Flight Control System application using dissimilar architecture is proposed as a case study.
Technical Paper

The Fault Avoidance and The Fault Tolerance Approaches for Increasing the Reliability of Aerospace and Automotive Systems

2005-11-22
2005-01-4157
In this work we discuss the fault avoidance and the fault tolerance approaches for increasing the reliability of aerospace and automotive systems. This includes: the basic definitions/concepts (reliability, maintainability, availability, redundancy, etc.), and characteristics (a priori analysis, a posteriori analysis, physical/hardware redundancy, analytical/software redundancy, etc.) of both approaches, their mathematical background and models (exponential, Weilbull, etc.), their basic theory, their methods and techniques (fault trees, dependence diagrams, Markov chains, etc.), some of their standards (SAE-ARP4761, AC 25.1309, etc.) and simulation environments (Cafta, etc.), and their applications to the reliability analysis and reliability improvement of aerospace and automotive vehicles. This is illustrated by some examples driven from the aerospace and automotive industries.
Technical Paper

The Application of a Requirements Traceability Automation Tool to the Documentation of a Satellite Project

2010-10-06
2010-36-0345
This paper presents the preliminary results of an "a posteriori" exercise of application of a Requirements Traceability Automation Tool (RT tool) to a set of documents. The documents have been prepared according to established Space System Engineering methodologies and with attention to text quality, but without attention to requirements traceability because the processes and methodologies used during their preparation predates the emergence of the processes and methodologies developed by Requirements Engineering (RE). This study is intended to determine some of the benefits of using a RT tool when compared with the previously used processes and methodologies. The set of documents under scrutiny have been prepared in the frame of the development of the CBERS-3 satellite (China-Brazil Earth Resources Satellite) and is composed of system, subsystem and equipment specification and covering documents related to the Electrical Power Subsystem (EPS) of the satellite.
Technical Paper

Study on a Fault-Tolerant System Applied to an Aerospace Control System

2010-10-06
2010-36-0330
On several engineering applications high Reliability is one of the most wanted features. The aspects of Reliability play a key role in design projects of aircraft, spacecraft, automotive, medical, bank systems, and so, avoiding loss of life, property, or costly recalls. The highly reliable systems are designed to work continuously, even upon external threats and internal Failures. Very convenient is the fact that the term 'Failure' may have its meaning tailored to the context of interesting, as its general definition refers to it as "any deviation from the specified behavior of a system". The above-mentioned 'deviation' may refer to: performance degradation, operational misbehavior, deviation of environmental qualification levels, Safety hazards, etc. Nevertheless, Reliability is not the only requirement for a modern system. Other features as Availability, Integrity, Security and Safety are always part of the same technical specification, in a same level of importance.
Technical Paper

Multiples Faults Detection and Isolation in Sensors of Dynamic Systems

2005-11-22
2005-01-4136
Several papers presents fault detection and isolation techniques for fault in only one sensor; in this paper we will present a technique for multiples faults detection and isolation in sensors of dynamic systems. Multiples faults have less probability to occur but it is not null. So in critical applications the system needs to be operational even in this situation. In this paper we will present a design for a Multiples Faults Detection and Isolation (MFDI) system, an example to illustrate this technique and its respective results.
Technical Paper

Modeling and Simulation of a Satellite Propulsive Subsystem by Physical and Signal Flows

2013-10-07
2013-36-0105
Modeling and Simulation (M&S) of dynamic systems based on computers is a multidisciplinary field that involves several knowledge areas and tools, and is broadly used in all development areas of space industry such as rocket and satellite design and construction. Once space systems are divided into several subsystems for ease of engineering, their models are divided the same way for the same reason. Such models may be done using different computational tools that are based on either physical flows, informational flows, or hybrid flows, depending on the subsystem nature. This is specially true for a satellite propulsion subsystem, and its physical (volume, mass, energy, enthalpy, entropy, linear momentum, etc.) flows. This paper presents the modeling and simulation of a satellite propulsion subsystem by physical and signal flows. To accomplish this task, two different computational tools were used: AMESim and MatLab.
Technical Paper

Integral of Modulus of Error Control for Smoothing Signals when Switching Modes of Aerospace and Automotive Systems

2015-09-22
2015-36-0445
Control systems that can switch between control or plant modes have the advantage of being simpler to design than an equivalent system with a single mode. However, the transition between these modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the system. This is can be of extreme importance in fields such as aerospace and automobilistic, as the switching between manual and autopilot modes or the switching of gears In this work, we will use integral criteria in original ways, to determine a coefficient on the system which should optimize the trajectory of the control signal, during the switching between two modes. Effectively, each transition will be done by a subsystem specific for it, according to the selected criterion. The simulations will be made in MATRIXx, MatLab or both, using models chosen from aerospace or automobilistic fields.
Technical Paper

Influences of Data Bus Protocols on an Aircraft Fly-By-Wire Networked Control System

2008-10-07
2008-36-0008
A major trend in modern aerospace and automotive systems is to integrate computing, communication and control into different levels of the vehicle and/or its supervision. A well fitted architecture adopted by this trend is the Common Bus Network Architecture. A Networked Control System (NCS) is called when the control loop is closed through a communication network. The presence of this communication network introduces new characteristics (sharing bus, delays, jitter etc.) to be considered at design time of a control system. This work focuses on the influences of data bus protocols on an aircraft Fly-By-Wire (FBW) networked control system. We intent to show, through simulations, the influences of sharing bus on a real time control system. To compare effects, we choose the CAN Bus protocol where the medium access control is event driven; and the TTP protocol where the medium access control is time driven.
Technical Paper

Generation and Customization of Real Time Code for Embedded Controllers Using a Modeling and Simulation Environment

2007-11-28
2007-01-2924
This works presents the generation and customization of real time code for embedded controllers using a modeling and simulation environment. When the controller model is considered satisfactory, the developers can use a code generation tool to build a real time source code capable to be migrated to an embedded target processor. The code generation tool used is capable to generate real time code in ANSI C or ADA 95 languages. This process can be customized to adequate to a target processor and/or a Real Time Operating System (RTOS). The code customization can be achieved using a specific Template Programming Language (TPL) that specifies how the code will be generated. This technique makes it possible the instantiation of real time embedded controllers code using the same controller model to a wide variety of target processors and/or RTOSs.
Technical Paper

Fault Detection and Diagnosis (FDD) on a Knock Sensor

2008-10-07
2008-36-0369
The purpose of this work is Fault Detection and Diagnosis (FDD) on a Knock Sensor because some of the modern petrol engines operate on the efficient four-stroke cycle, where each cylinder of the engine contains an intake and exhaust poppet valve that is operated at the appropriate time. The ECM (Engine Control Module) uses the Knock Sensor signal to control timing. The Knock Sensor detects engine knock and sends voltage signal to the ECM. These signals can be sufficient to detect abnormal combustion, like ‘spark knock’ and ‘surface ignition’. Engine knock occurs within a specified range. The Knock Sensor, located in the engine block, cylinder head, or intake manifold is tuned to detect that frequency, which motivates the use of signal models for detection. But this sensor is a wide-band accelerometer of the piezoelectric type too. Analogy with a general seismic mass system is possible since it is a general damped second order vibrating system which is forced into oscillatory motion.
Technical Paper

Eigenstructure Techniques for Fault Detection and Isolation in Aerospace and Automotive Systems

2004-11-16
2004-01-3387
Eigenstructure techniques allow to detect and isolate faulty components in a dynamic process, such as sensor biases, actuator malfunctions, changes in dynamic parameters due to leaks and deterioration. Fault detection is the first step to achieve fault tolerance, but for this the redundancy has to be included in the system. This redundancy can be either by hardware or by software. In situations in which it is not possible to use hardware redundancy only the software redundancy can be used. Therefore using eigenstructure techniques, for the fault detection and isolation, the tests can be done through the angle between the residue vector direction and the fault direction vector. By this way, we can reduce false alarm and the alarm loss rates due to the noise and changes in system parameters.
Technical Paper

Design of an Attitude Control System for the Multi-Mission Platform and its Migration to a Real Time Operating System

2007-11-28
2007-01-2857
This paper presents the first of four parts of the academic design of an Attitude Control System (ACS) for the Multi-Mission Platform (MMP) and its migration to a Real Time Operating System. The MMP is a three axis stabilized artificial satellite now under development at the National Institute for Space Research (INPE). Such design applied some software engineering concepts as: 1)visual modeling; 2)automatic code generation; 3)automatic code migration; 4)soft real time simulation; and 5)hard real time simulation. A block diagram based modeling and a virtual time simulation of the MMP ACS in its nominal operational mode were built in the MatrixX 7.1 environment satisfying the three axis pointing and stabilization requirements. After that, its AutoCode module was used to generate C ANSI code representing the block diagram model. Time characteristics were added to the ACS generated code to make it the real time control software of MMP nominal operational mode.
Technical Paper

Current Trends Driving the Aerospace and Automotive Systems Architectures

2011-10-04
2011-36-0387
In this work we discuss current trends driving the aerospace and automotive systems architectures. This includes trends as: 1) pos-globalization and regionalization; 2) the formation of knowledge oligopolies; 3) commonality, standardization and even synergy (of components, tools, development process, certification agents, standards); 4) reuse and scalability; 5) synergy of knowledge and tools convergence; 6) time, cost and quality pressures and innovation speed; 7) environmental and safety issues; and 8) abundance of new technologies versus scarcity of skilled manpower to apply them.
Technical Paper

Bump Reduction for the Reconfigurable Control Architecture of the MultiMission Platform

2011-10-04
2011-36-0187
Many control systems switch between control modes according to necessity. That is often simpler than designing a full control to all situations. However, this creates new problems, as determining the composed system stability and the transient during switching. The latter, while temporary, may introduce overshooting that degrade performance and damage the plant. This is particularly true for the MultiMission Platform (MMP), a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation and other submodes, according to ground command or information coming from the control system, mainly alarms. It can acquire one and three axis stabilization in generic attitudes, with actuators including magnetotorquers, thrusters and reaction wheels.
Technical Paper

Automatic Code Generation of an Attitude Control System for the Multi-Mission Platform

2008-10-07
2008-36-0362
This paper presents the automatic code generation process of the academic design of an Attitude Control System (ACS) for the Multi-Mission Platform (MMP). The MMP is a three axis stabilized artificial satellite now under development at the National Institute for Space Research (INPE). Such design applied some software engineering concepts as: 1)visual modeling; 2)automatic code generation; 3)automatic code migration; 4)soft real time simulation; and 5)hard real time simulation. A block diagram based modeling and a virtual time simulation of the MMP ACS in its nominal operational mode were built in the MatrixX 7.1 environment satisfying the three axis pointing and stabilization requirements. After that, its AutoCode module was used to generate C ANSI code representing the block diagram model. Four operating systems were used for code migration: 1)Windows 2000; 2)Mandrake Linux 10.1; 3)RedHawk Linux 2.1; and 4)RTEMS 4.6.2.
Technical Paper

Analysis of Some Semiconductors by the Handbook MIL-HDBK-217 FN2 to Improve the Reliability of Aerospace and Automotive Electronic Equipments

2017-11-07
2017-36-0217
Systems such as satellites, airplanes, cars and air traffic controls are becoming more complex and/or highly integrated. These systems integrate several technologies inside themselves, and must be able to work in very demanding environments, sometimes with few or none maintenance services due to their severe conditions of work. To survive such severe work conditions, the systems must present high levels of reliability, which are achieved through different approaches, processes, etc. These unfold in many: levels of aggregation (systems, subsystems, equipments, components, etc.), phases of their lifecycles (conception, design, manufacturing, assembly, integration, tests, operation, etc.), environments (land, sea, air, space, etc.), types of components/applications/experiences/technological communities (nuclear, aerospace, military, automotive, medical, commercial, etc.), leaded by the widespread use of semiconductors.
Technical Paper

An Overview of Models, Methods and Tools for Verification, Validation and Accreditation of Real Time Critical Software

2013-10-07
2013-36-0530
Real-time critical systems are those whose failures may cause loss of transactions/data, missions/batches, vehicles/properties, or even people/human life. Accordingly, some regulations prescribe their maximum acceptable probability of failures to range from about 10−4 to 10−10 failures per hour. Examples of such systems are the ones involving nuclear plants, aircrafts, satellites, automobiles, or traffic controls. They are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754A Standard. Those systems include, most of the time, real time critical software that must be specified, designed, implemented, validated, verified and accredited (VVA). To do that, models, specially the V-Model, are frequently adopted, together with methods and tools which perform software VVA to ensure compliance (of correctness, reliability, robustness, etc.) of software to several specific standards such as DO178-B/DO-178C (aviation) or IEC 26262 (automotive) among others.
Technical Paper

A discussion on fault prognosis/prediction and health monitoring techniques to improve the reliability of aerospace and automotive systems

2018-09-03
2018-36-0316
Currently, aerospace and automotive industries are developing complexand/or highly integrated systems, whose services require greater confidence to meet a set of specifications that are increasingly demanding, such as successfully operating a communications satellite, a commercial airplane, an automatic automobile, and so on. To meet these requirements and expectations, there is a growing need for fault treatment, up to predict faults and monitor the health of the components, equipment, subsystems or systems used. In the last decades, the approaches of 1) Fault Prevention, 2) Fault Detection/Tolerance and 3) Fault Detection/Correction have been widely studied and explored.
Technical Paper

A discussion on algorithms for health monitoring, fault prognosis and RUL prediction of aerospace and automotive equipment

2020-01-13
2019-36-0264
Companies are gradually developing: 1) complex and/or highly integrated systems including vehicles (as satellites, airplanes, cars, etc.) or equipment (as computers, cell phones, no breaks, etc.) to use under 2) increasingly varied or inhospitable environments, and to survive under 3) increasingly long life cycles and unavoidable changes in staff & facilities & technologies. The overall decision to use (by time, cost, quality, of functions, services, etc.) such end systems under 2 require 4) high Dependability (Reliability, Maintainability, Availability, Correction, Safety, Security, etc.) of them. The overall survival in use (by health monitoring, housekeeping, retrofit, upgrade, etc.) of such end systems under 3 require 5) high Suportability (Maintainability, Adaptability, Availability, Robustness, etc.) of them coupled with the support systems.
Technical Paper

A New Tool to Help Filling Requirements Documents

2008-10-07
2008-36-0287
Nowadays, given the shrinking budgets and deadlines of the aerospace and automotive industries, the importance and need of the requirements engineering is becoming more and more evident. This means that progressively more users face a difficult task on the different environments of project development: 1) to write better requirements; and 2) to do it faster than ever. It would be nice if they had some tools to help them and abbreviate such a difficult task. This work summarizes the development of a new tool that does exactly that. Its wizard guides the user through the steps necessary to create good requirements when writting a requirements document, depending on the kind of requirements document desired. For example: there are significant differences between user requirements and system requirements documents. The wizard script is composed by a serie of questions related to the parts of the scheme to build a complete and effective requirement.
X