Refine Your Search

Topic

Search Results

Standard

THE DETERMINATION OF PARTICULATE CONTAMINATION IN LIQUIDS BY THE PARTICLE COUNT METHOD

1969-08-01
HISTORICAL
ARP598A
This method describes a procedure for the sizing and counting of particulate contamination in liquid samples by membrane filtration. The procedure will allow measurement of particulate contamination five microns or greater in size with a maximum variation of ±20% in results over an average of two runs. This procedure can be used for all samples where the membrane filter is compatible with the sample liquid and rinse liquid.
Standard

THE DETERMINATION OF PARTICULATE CONTAMINATION IN LIQUIDS BY THE PARTICLE COUNT METHOD

1991-11-01
HISTORICAL
ARP598B
This method describes a procedure for the sizing and counting of particulate contamination in liquid samples by membrane filtration. The procedure will allow measurement of particulate contamination five micrometres or greater in size with a maximum variation of ±20% in results over an average of two runs. This procedure can be used for all samples where the membrane filter is compatible with the sample liquid and rinse liquid. Section II of this procedure may be used to count any sample on a gridded membrane where particles are evenly distributed. This procedure is an alternative to counting with an automatic particle counter although results by each method from identical samples might not be equivalent due to individual idiosyncrasies in each technique.
Standard

Secondary Filters for Fluid System Reliability

2004-12-01
HISTORICAL
AIR4057A
This SAE Aerospace Information Report (AIR) discusses the design choices and engineering trade-offs available to the system designer in the efficient selection and application of Last-Chance filters in contrast to main or primary system filters.
Standard

Secondary Filters for Fluid System Reliability

2012-09-24
CURRENT
AIR4057B
This SAE Aerospace Information Report (AIR) discusses the design choices and engineering trade-offs available to the system designer in the efficient selection and application of Last-Chance filters in contrast to main or primary system filters.
Standard

SECONDARY FILTERS FOR FLUID SYSTEM RELIABILITY

1994-05-01
HISTORICAL
AIR4057
It discusses the design choices and engineering trade-offs available to the system designer in the efficient selection and application of Last-Chance filters in contrast to main or primary system filters.
Standard

Procedure for the Determination of Particulate Contamination of Air in Dust Controlled Spaces by the Manual Particle Count Method

2001-03-01
HISTORICAL
ARP743B
This SAE Aerospace Recommended Practice (ARP) describes two procedures for sampling particles in dust controlled spaces. One procedure covers airborne dust above 5 μm. The other (and newly added procedure) covers particles of 25 μm and larger that “fall out” of the environment onto surfaces. In each case the particles are sized in the longest dimension and counted. Airborne particles are reported as particles per cubic meter (cubic foot) whereas particles collected in fall out samples are reported as particles per 0.1 square meter (square foot). This document includes English units in parentheses as referenced information to the SI units where meaningful. These procedures may also be used for environmental analysis where the quality of the particles by visual or chemical analysis is intended.
Standard

Procedure for the Determination of Particulate Contamination of Air in Dust Controlled Spaces By the Particle Count Method

2010-05-26
CURRENT
ARP743C
This document has been decalred "CANCELLED" as of May 2010. By this action, this document will remain listed in the Numercial Section of the Aerospace Standards Index. This SAE Aerospace Recommended Practice (ARP) describes two procedures for sampling particles in dust controlled spaces. One procedure covers airborne dust above 5 μm. The other (and newly added procedure) covers particles of 25 μm and larger that "fall out" of the environment onto surfaces. In each case the particles are sized in the longest dimension and counted. Airborne particles are reported as particles per cubic meter (cubic foot) whereas particles collected in fall out samples are reported as particles per 0.1 square meter (square foot). This document includes English units in parentheses as referenced information to the SI units where meaningful.
Standard

PROCEDURE FOR THE DETERMINATION OF PARTICULATE CONTAMINATION OF AIR IN DUST CONTROLLED SPACES BY THE PARTICLE COUNT METHOD

1962-08-30
HISTORICAL
ARP743
This test describes a self-checking procedure for the determination of particulate contaminant five microns or greater in size in air by the particle count method. A maximum variation of two to one (±33% of the average of two runs) in results should be expected for replicate counts on the same sample, providing that the procedure is followed closely and the precautions presented regarding check samples and self-checking aspects are observed.
Standard

Methods, Locations And Criteria For System Sampling And Measuring The Solid Particle Contamination Of Hydraulic Fluids

2010-03-08
HISTORICAL
ARP5376B
This SAE Aerospace Recommended Practice (ARP) provides procedures for assuring cleanliness of sampling equipment, for performing the sampling process, and for measuring and reporting the sample particle count. The ARP gives procedures for cleaning sample bottles, when used, and recommends the solvents to be applied and how these solvents should be prepared. Requirements for the selection of the sampling point, sampling method, and sampling frequency are also specified. This ARP also recommends three measuring methods for determining the level of solid particle contamination of hydraulic fluids used in aerospace hydraulics. These are: a on-line automatic particle counting; b automatic particle counting method using bottle samples; c microscopic particle count method using bottle samples.
Standard

Methods for Evaluating Cryogenic Filters

2002-03-23
HISTORICAL
ARP900A
The purpose of this test procedure is to present test methods that can be utilized to evaluate the filtration and operating characteristics of filters that will be utilized in a cryogenic system. The methods presented herein are intended to supplement standard filter testing specifications to allow evaluation of filter performance characteristics in areas that could be affected by extreme low temperatures. The test methods can be utilized to evaluate filters up to and including 60 gpm (230 lpm) capacity. If higher flow rate filters are to be evaluated in accordance with the test methods presented herein, it will be necessary to increase the system flow capacity and the size of effluent sampling system.
Standard

Methods for Evaluating Cryogenic Filters

2011-12-19
HISTORICAL
ARP900B
The purpose of this document is to present test methods that can be utilized to evaluate the filtration and operating characteristics of filters that will be utilized in a cryogenic system. The methods presented herein are intended to supplement standard filter testing specifications to allow evaluation of filter performance characteristics in areas that could be affected by extreme low temperatures. The test methods can be utilized to evaluate filters for particle sizes equal to or greater than 5.0 μm and flows up to and including 60 gpm (230 L/min) capacity. If higher flow rate filters are to be evaluated in accordance with the test methods presented herein, it will be necessary to increase the system flow capacity and the size of effluent sampling system from those recommended in this document.
X